Python中的卷积神经网络(CNN)入门

卷积神经网络(Convolutional Neural Networks, CNN)是一类特别适用于处理图像数据的深度学习模型。在Python中,我们可以使用流行的深度学习库TensorFlow和Keras来创建和训练一个CNN模型。在本文中,我们将介绍如何使用Keras创建一个简单的CNN模型,并用它对手写数字进行分类。

1. 准备数据集

我们将使用MNIST数据集,这是一个常用的手写数字数据集。Keras库提供了一个方便的函数来加载MNIST数据集。数据集包含60000个训练样本和10000个测试样本,每个样本是一个28x28的灰度图像。

复制代码
python
复制代码
from tensorflow.keras.datasets import mnist

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

接下来,我们需要对数据进行预处理。我们将图像数据归一化到0-1之间,并将标签数据进行one-hot编码:

复制代码
python
复制代码
train_images = train_images.reshape((60000, 28, 28, 1))
train_images = train_images.astype("float32") / 255

test_images = test_images.reshape((10000, 28, 28, 1))
test_images = test_images.astype("float32") / 255

from tensorflow.keras.utils import to_categorical

train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)
2. 创建CNN模型

我们将使用Keras创建一个简单的CNN模型,包括卷积层、池化层、全连接层等。模型的结构如下:

  • 卷积层:使用32个3x3的卷积核,激活函数为ReLU;

  • 池化层:使用2x2的最大池化;

  • 卷积层:使用64个3x3的卷积核,激活函数为ReLU;

  • 池化层:使用2x2的最大池化;

  • 全连接层:包含128个神经元,激活函数为ReLU;

  • 输出层:包含10个神经元,激活函数为softmax。

    python
    复制代码
    from tensorflow.keras import layers
    from tensorflow.keras import models

    model = models.Sequential()
    model.add(layers.Conv2D(32, (3, 3), activation="relu", input_shape=(28, 28, 1)))
    model.add(layers.MaxPooling2D((2, 2)))
    model.add(layers.Conv2D(64, (3, 3), activation="relu"))
    model.add(layers.MaxPooling2D((2, 2)))
    model.add(layers.Flatten())
    model.add(layers.Dense(128, activation="relu"))
    model.add(layers.Dense(10, activation="softmax"))

3. 训练CNN模型

我们将使用训练数据集训练CNN模型,并在测试数据集上评估模型性能。我们将使用交叉熵损失函数和Adam优化器,训练10个epoch。

复制代码
python
复制代码
model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"])

model.fit(train_images, train_labels, epochs=10, batch_size=64)

test_loss, test_acc = model.evaluate(test_images, test_labels)
print("Test accuracy: {:.2f}%".format(test_acc * 100))
4. 使用CNN模型进行预测

训练好CNN模型后,我们可以用它对新的图像数据进行预测。下面我们将随机选择一个测试图像,并使用模型进行预测。

复制代码
python
复制代码
import numpy as np
import matplotlib.pyplot as plt

index = np.random.randint(0, len(test_images))
image = test_images[index]

plt.imshow(image.reshape(28, 28), cmap="gray")
plt.show()

predictions = model.predict(np.expand_dims(image, axis=0))
predicted_label = np.argmax(predictions)

print("Predicted label:", predicted_label)

上述代码将展示一个随机选择的手写数字图像,并输出模型预测的结果。

这就是如何在Python中使用Keras创建和训练一个简单的CNN模型进行手写数字分类。在实际应用中,可以根据需求调整CNN模型的结构和参数以优化性能。

相关推荐
CareyWYR32 分钟前
每周AI论文速递(251201-251205)
人工智能
北京耐用通信2 小时前
电磁阀通讯频频“掉链”?耐达讯自动化Ethernet/IP转DeviceNet救场全行业!
人工智能·物联网·网络协议·安全·自动化·信息与通信
cooldream20092 小时前
小智 AI 智能音箱深度体验全解析:人设、音色、记忆与多场景玩法的全面指南
人工智能·嵌入式硬件·智能音箱
oil欧哟2 小时前
AI 虚拟试穿实战,如何低成本生成模特上身图
人工智能·ai作画
NiNi_suanfa3 小时前
【Qt】Qt 批量修改同类对象
开发语言·c++·qt
小糖学代码3 小时前
LLM系列:1.python入门:3.布尔型对象
linux·开发语言·python
央链知播3 小时前
中国移联元宇宙与人工智能产业委联席秘书长叶毓睿受邀到北京联合大学做大模型智能体现状与趋势专题报告
人工智能·科技·业界资讯
人工智能培训3 小时前
卷积神经网络(CNN)详细介绍及其原理详解(2)
人工智能·神经网络·cnn
Data_agent3 小时前
1688获得1688店铺详情API,python请求示例
开发语言·爬虫·python
YIN_尹3 小时前
目标检测模型量化加速在 openEuler 上的实现
人工智能·目标检测·计算机视觉