优化算法--李沐

目录

1.1梯度下降

1.2随机梯度下降

1.3小批量随机梯度下降

1.4冲量法

[1.5 Adam](#1.5 Adam)


损失值也就是预测值与真实值之间的差值是f(x),x是所有超参数组成的一条向量,c是可以限制的,比如说权重大于等于0。

使用迭代优化算法求解一般只能保证找到局部最小值,因为一到局部最小的地方,用梯度下降算法的话此时的梯度就已经等于0了。

凸集的意思就是在一个区域里面找一根线,这条线的任意一个点都在这个区域里面。

凸函数最简单的理解就是,在函数上画两个点,这两个点连起来,保证整个函数都在连线的下面。

1.1梯度下降

1.2随机梯度下降

随机梯度下降就是随机选取单个样本上的损失来近似全局的损失。单个样本损失梯度的期望等于全局损失梯度的均值,虽然有噪音,但是整体的方向是差不多的。

1.3小批量随机梯度下降

减小了方差就是减小了抖动,蓝色就是梯度下降,一开始就很好,紫色是随机梯度下降,随机梯度下降比梯度下降要慢的原因是,每次算一个样本用不了硬件的并行度,加批量。批量大小在一个合适的区间是比较好的。

1.4冲量法

也就是更平滑的改变方向,不要让方向变得过于大。原理就是不只是看当前时刻的梯度,也看过去时刻的梯度。如果特别不一样的话,就会抵消掉一些,让变化不那么剧烈。如果取等于0.99的话,大概可以看过去几十个梯度的平均。如果样本比较大娶个0.99也是比较正常的。0.5就是看过去的两三个梯度。

1.5 Adam

Adam可以认为是非常平滑的SGD,非常平滑的话对学习率就不太敏感了。如果想去调参的话用sgd加其他的算法会比用Adam效果好一丁点。当t比较小的时候有用,修正t较小的时候偏零的趋势。t比较大的时候无所谓,因为是大于0小于1的,在t时刻很大的时候,就变成0了。所以修正是针对比较小的t做的。

重新调整的梯度是对每一个权重的维度除以梯度的平方的和(过去的所有梯度加起来),就把所有的特征都拉到一个比较平均的地方,这样好调学习率。,使得过去的梯度方向比较平滑,是使得每个维度的值都在合适的范围里面,做维度的调整。

Adam对学习率比较稳定,调参容易一点。

相关推荐
c++bug几秒前
动态规划VS记忆化搜索(2)
算法·动态规划
哪 吒2 分钟前
2025B卷 - 华为OD机试七日集训第5期 - 按算法分类,由易到难,循序渐进,玩转OD(Python/JS/C/C++)
python·算法·华为od·华为od机试·2025b卷
二川bro13 分钟前
飞算智造JavaAI:智能编程革命——AI重构Java开发新范式
java·人工智能·重构
acstdm18 分钟前
DAY 48 CBAM注意力
人工智能·深度学习·机器学习
澪-sl32 分钟前
基于CNN的人脸关键点检测
人工智能·深度学习·神经网络·计算机视觉·cnn·视觉检测·卷积神经网络
军训猫猫头40 分钟前
1.如何对多个控件进行高效的绑定 C#例子 WPF例子
开发语言·算法·c#·.net
羊小猪~~1 小时前
数据库学习笔记(十七)--触发器的使用
数据库·人工智能·后端·sql·深度学习·mysql·考研
success1 小时前
【爆刷力扣-数组】二分查找 及 衍生题型
算法
摸爬滚打李上进1 小时前
重生学AI第十六集:线性层nn.Linear
人工智能·pytorch·python·神经网络·机器学习
HuashuiMu花水木1 小时前
PyTorch笔记1----------Tensor(张量):基本概念、创建、属性、算数运算
人工智能·pytorch·笔记