优化算法--李沐

目录

1.1梯度下降

1.2随机梯度下降

1.3小批量随机梯度下降

1.4冲量法

[1.5 Adam](#1.5 Adam)


损失值也就是预测值与真实值之间的差值是f(x),x是所有超参数组成的一条向量,c是可以限制的,比如说权重大于等于0。

使用迭代优化算法求解一般只能保证找到局部最小值,因为一到局部最小的地方,用梯度下降算法的话此时的梯度就已经等于0了。

凸集的意思就是在一个区域里面找一根线,这条线的任意一个点都在这个区域里面。

凸函数最简单的理解就是,在函数上画两个点,这两个点连起来,保证整个函数都在连线的下面。

1.1梯度下降

1.2随机梯度下降

随机梯度下降就是随机选取单个样本上的损失来近似全局的损失。单个样本损失梯度的期望等于全局损失梯度的均值,虽然有噪音,但是整体的方向是差不多的。

1.3小批量随机梯度下降

减小了方差就是减小了抖动,蓝色就是梯度下降,一开始就很好,紫色是随机梯度下降,随机梯度下降比梯度下降要慢的原因是,每次算一个样本用不了硬件的并行度,加批量。批量大小在一个合适的区间是比较好的。

1.4冲量法

也就是更平滑的改变方向,不要让方向变得过于大。原理就是不只是看当前时刻的梯度,也看过去时刻的梯度。如果特别不一样的话,就会抵消掉一些,让变化不那么剧烈。如果取等于0.99的话,大概可以看过去几十个梯度的平均。如果样本比较大娶个0.99也是比较正常的。0.5就是看过去的两三个梯度。

1.5 Adam

Adam可以认为是非常平滑的SGD,非常平滑的话对学习率就不太敏感了。如果想去调参的话用sgd加其他的算法会比用Adam效果好一丁点。当t比较小的时候有用,修正t较小的时候偏零的趋势。t比较大的时候无所谓,因为是大于0小于1的,在t时刻很大的时候,就变成0了。所以修正是针对比较小的t做的。

重新调整的梯度是对每一个权重的维度除以梯度的平方的和(过去的所有梯度加起来),就把所有的特征都拉到一个比较平均的地方,这样好调学习率。,使得过去的梯度方向比较平滑,是使得每个维度的值都在合适的范围里面,做维度的调整。

Adam对学习率比较稳定,调参容易一点。

相关推荐
2501_941142935 分钟前
基于区块链的数字身份管理:探索安全与隐私的未来
网络·数据库·人工智能
B站_计算机毕业设计之家9 分钟前
python手写数字识别系统 CNN算法 卷积神经网络 OpenCV和Keras模型 计算机视觉 (建议收藏)✅
python·深度学习·opencv·机器学习·计算机视觉·cnn
骑猪兜风23317 分钟前
谷歌 AI IDE Antigravity 系统提示词分析
人工智能·ai编程·ai ide·gemini3·谷歌gemini3·antigravity
Jing_jing_X25 分钟前
ChatGPT 四种模式:普通对话、推理思考、深度研究、学习模式有什么区别?
人工智能·学习·chatgpt
汀、人工智能26 分钟前
AI Compass前沿速览:Gemini 3、Grok 4.1、GPT-5.1、千问、Lumine-3D开世界AI智能体
人工智能·gemini 3·grok4.1·gpt 5.1
用户51914958484527 分钟前
利用配置错误的postMessage()函数实现DOM型XSS攻击
人工智能·aigc
徐子童34 分钟前
数据结构----排序算法
java·数据结构·算法·排序算法·面试题
hansang_IR42 分钟前
【记录】四道双指针
c++·算法·贪心·双指针
Valueyou2442 分钟前
引入基于加权 IoU 的 WiseIoU 回归损失以提升 CT 图像检测鲁棒性
人工智能·python·深度学习·目标检测
_OP_CHEN44 分钟前
算法基础篇:(十二)基础算法之倍增思想:从快速幂到大数据运算优化
大数据·c++·算法·acm·算法竞赛·倍增思想