优化算法--李沐

目录

1.1梯度下降

1.2随机梯度下降

1.3小批量随机梯度下降

1.4冲量法

[1.5 Adam](#1.5 Adam)


损失值也就是预测值与真实值之间的差值是f(x),x是所有超参数组成的一条向量,c是可以限制的,比如说权重大于等于0。

使用迭代优化算法求解一般只能保证找到局部最小值,因为一到局部最小的地方,用梯度下降算法的话此时的梯度就已经等于0了。

凸集的意思就是在一个区域里面找一根线,这条线的任意一个点都在这个区域里面。

凸函数最简单的理解就是,在函数上画两个点,这两个点连起来,保证整个函数都在连线的下面。

1.1梯度下降

1.2随机梯度下降

随机梯度下降就是随机选取单个样本上的损失来近似全局的损失。单个样本损失梯度的期望等于全局损失梯度的均值,虽然有噪音,但是整体的方向是差不多的。

1.3小批量随机梯度下降

减小了方差就是减小了抖动,蓝色就是梯度下降,一开始就很好,紫色是随机梯度下降,随机梯度下降比梯度下降要慢的原因是,每次算一个样本用不了硬件的并行度,加批量。批量大小在一个合适的区间是比较好的。

1.4冲量法

也就是更平滑的改变方向,不要让方向变得过于大。原理就是不只是看当前时刻的梯度,也看过去时刻的梯度。如果特别不一样的话,就会抵消掉一些,让变化不那么剧烈。如果取等于0.99的话,大概可以看过去几十个梯度的平均。如果样本比较大娶个0.99也是比较正常的。0.5就是看过去的两三个梯度。

1.5 Adam

Adam可以认为是非常平滑的SGD,非常平滑的话对学习率就不太敏感了。如果想去调参的话用sgd加其他的算法会比用Adam效果好一丁点。当t比较小的时候有用,修正t较小的时候偏零的趋势。t比较大的时候无所谓,因为是大于0小于1的,在t时刻很大的时候,就变成0了。所以修正是针对比较小的t做的。

重新调整的梯度是对每一个权重的维度除以梯度的平方的和(过去的所有梯度加起来),就把所有的特征都拉到一个比较平均的地方,这样好调学习率。,使得过去的梯度方向比较平滑,是使得每个维度的值都在合适的范围里面,做维度的调整。

Adam对学习率比较稳定,调参容易一点。

相关推荐
卧式纯绿1 分钟前
每日文献(八)——Part one
人工智能·yolo·目标检测·计算机视觉·目标跟踪·cnn
HelloDam1 分钟前
基于元素小组的归并排序算法
后端·算法·排序算法
HelloDam1 分钟前
基于连贯性算法的多边形扫描线生成(适用于凸多边形和凹多边形)【原理+java实现】
算法
巷9558 分钟前
OpenCV图像形态学:原理、操作与应用详解
人工智能·opencv·计算机视觉
深蓝易网37 分钟前
为什么制造企业需要用MES管理系统升级改造车间
大数据·运维·人工智能·制造·devops
xiangzhihong844 分钟前
Amodal3R ,南洋理工推出的 3D 生成模型
人工智能·深度学习·计算机视觉
狂奔solar1 小时前
diffusion-vas 提升遮挡区域的分割精度
人工智能·深度学习
uhakadotcom1 小时前
Apache Airflow入门指南:数据管道的强大工具
算法·面试·github
资源大全免费分享1 小时前
MacOS 的 AI Agent 新星,本地沙盒驱动,解锁 macOS 操作新体验!
人工智能·macos·策略模式
跳跳糖炒酸奶1 小时前
第四章、Isaacsim在GUI中构建机器人(2):组装一个简单的机器人
人工智能·python·算法·ubuntu·机器人