优化算法--李沐

目录

1.1梯度下降

1.2随机梯度下降

1.3小批量随机梯度下降

1.4冲量法

[1.5 Adam](#1.5 Adam)


损失值也就是预测值与真实值之间的差值是f(x),x是所有超参数组成的一条向量,c是可以限制的,比如说权重大于等于0。

使用迭代优化算法求解一般只能保证找到局部最小值,因为一到局部最小的地方,用梯度下降算法的话此时的梯度就已经等于0了。

凸集的意思就是在一个区域里面找一根线,这条线的任意一个点都在这个区域里面。

凸函数最简单的理解就是,在函数上画两个点,这两个点连起来,保证整个函数都在连线的下面。

1.1梯度下降

1.2随机梯度下降

随机梯度下降就是随机选取单个样本上的损失来近似全局的损失。单个样本损失梯度的期望等于全局损失梯度的均值,虽然有噪音,但是整体的方向是差不多的。

1.3小批量随机梯度下降

减小了方差就是减小了抖动,蓝色就是梯度下降,一开始就很好,紫色是随机梯度下降,随机梯度下降比梯度下降要慢的原因是,每次算一个样本用不了硬件的并行度,加批量。批量大小在一个合适的区间是比较好的。

1.4冲量法

也就是更平滑的改变方向,不要让方向变得过于大。原理就是不只是看当前时刻的梯度,也看过去时刻的梯度。如果特别不一样的话,就会抵消掉一些,让变化不那么剧烈。如果取等于0.99的话,大概可以看过去几十个梯度的平均。如果样本比较大娶个0.99也是比较正常的。0.5就是看过去的两三个梯度。

1.5 Adam

Adam可以认为是非常平滑的SGD,非常平滑的话对学习率就不太敏感了。如果想去调参的话用sgd加其他的算法会比用Adam效果好一丁点。当t比较小的时候有用,修正t较小的时候偏零的趋势。t比较大的时候无所谓,因为是大于0小于1的,在t时刻很大的时候,就变成0了。所以修正是针对比较小的t做的。

重新调整的梯度是对每一个权重的维度除以梯度的平方的和(过去的所有梯度加起来),就把所有的特征都拉到一个比较平均的地方,这样好调学习率。,使得过去的梯度方向比较平滑,是使得每个维度的值都在合适的范围里面,做维度的调整。

Adam对学习率比较稳定,调参容易一点。

相关推荐
用针戳左手中指指头几秒前
AI小白搞AI之目标检测:王者荣耀画面识别
人工智能·python·yolo·目标检测·王者荣耀
码农三叔几秒前
(9-2-02)自动驾驶中基于概率采样的路径规划:基于Gazebo仿真的路径规划系统(2)
人工智能·机器学习·机器人·自动驾驶·rrt
Fasda123459 分钟前
使用VFNet模型实现车轮缺陷检测与分类_改进模型_r50-mdconv-c3-c5_fpn_ms-2x_coco
人工智能·分类·数据挖掘
大学生毕业题目10 分钟前
毕业项目推荐:105-基于yolov8/yolov5/yolo11的烟草等级检测识别系统(Python+卷积神经网络)
人工智能·python·yolo·目标检测·cnn·pyqt·烟草等级
葫三生12 分钟前
三生原理范畴语法表明中国哲学可为算法母语
人工智能·深度学习·算法·transformer
D_FW20 分钟前
数据结构第五章:树与二叉树
数据结构·算法
机器鱼22 分钟前
YOLO26目标检测与实例分割ONNXRUNTIME推理
人工智能·目标检测·计算机视觉
Aaron_94532 分钟前
LangChain:构建大语言模型应用的革命性框架深度解析
人工智能·语言模型·langchain
WHS-_-202233 分钟前
Tx and Rx IQ Imbalance Compensation for JCAS in 5G NR
javascript·算法·5g
jinmo_C++44 分钟前
Leetcode_59. 螺旋矩阵 II
算法·leetcode·矩阵