怎么提升数据分析能力?——功法篇(下)

先来复习一下上篇提到的3个疑问:

为什么我做出来的分析总觉得没有别人的那么高级?
老板为什么总说我的分析"太浅了"?
数据分析师每天的工作就是取数做需求?

看完上篇讲的金字塔原理,如果你还有疑问,不妨再认识一下另一个数据分析的无上功法:

第一性原理

自从某一次马斯克在公开采访中提出了第一性原理这个概念之后,这个听起来很唬人但是很难说清楚到底是什么的概念就被人用烂了,相信你也在不同的地方听到过这个词语。

关于这一点的定义,在这里我就不赘述了, 我只提出一种能帮助你提升思维深度的理解方式:找到你正在做的事情里面的,最本质的那条公式

举个栗子

在游戏数据分析中,数据分析师需要负责的分析模块可能有很多,譬如:

  • 新用户的留存分析
  • 新手引导漏斗分析
  • 资源产出消耗分析
  • 广告素材的效果分析
  • 广告渠道的新进用户质量
  • 用户付费偏好分析'
  • ...
    以资源产出消耗为例,现在有一个抽卡活动,例如痒痒鼠:

    在活动开启两周后,我们需要对活动进行数据分析,了解活动期间用户的勾玉消耗情况和活动表现,产出了两份报告,报告的主要结论如下:

报告结论A

  • 本周活动开启后A资源消耗了xxxxx,对比上周提升了xxxx,人均消耗了xxxx,对比上周提升了xxxx

  • 用户消耗A资源兑换最多的是抽卡道具B,占总消耗的xx%,人均兑换了XXX次

  • 活动期间,共有xxx个用户参与了活动,占比达到xx%
    报告结论B:

  • 本次活动有效降低了A资源的平均存量,活动期间A资源累计消耗xxxx,人均消耗了xxx,人均存量从xxx下降至xxx,下降了xx%

  • 活动期间抽卡道具B兑换情况符合预期,相关消耗占总消耗的XX%。相比之下同样价值的抽卡道具C吸引力偏低,仅占总消耗的XX%

  • 活动期间总体参与率XX%,其中低存量用户参与率XX%,高资源存量用户参与率仅xx%,活动对高资源存量用户的影响仍有不足

两份报告都是做了非常常规的描述统计分析 ,没有用到高级的预测算法,也没有使用时序之类的进阶分析方法,但很明显,我们都会觉得B是一份更好的结论,而A则让人感觉太浅了/作用有限

为什么会有这样的差异呢?

我们仔细提取一下报告的关键词,会发现B结论里面有一些亮眼的词:存量下降、道具吸引力不足、用户影响不足,由此我们可以整理出一个完整的思路:这个活动是通过某些道具,吸引特定的用户,从而达到资源存量下降的目的,也就是

存量减少量 = 用户数 x 参与率 x 人均消耗量

这就是这个分析的第一性原理

  • 活动的目的是减少A资源存量
  • 减少存量可以通过2个方面来实现,1)提升参与率 2)提升消耗量
  • 参与率可以分为高存量人群的参与率和低存量人群的参与率
  • 消耗量可以通过B道具或者C道具来实现

B结论完整的还原了这个公式,并且对这个公式里的每个环节进行了判断,因此让我们感觉结论清晰,有深度

找到那一个最重要的公式

这是一个非常通用的方法,当你掌握了一件事情或者一个领域的公式时,你就可以保证自己的思维是足够深入和透彻的

例如游戏公司的目标都是实现盈利,而:

利润 = 收入-成本 = 用户量 x (留存 x 生命周期 x 付费 - 获客成本)

所以,用户量越高,用户生命周期越长,付费越高,用户获取成本越低,那么游戏公司的盈利就会越好,也因此有了游戏行业常见的部门分工:

  • 发行商:扩大用户量、降低用户成本、提升用户生命周期
  • 研发商:提升留存,提升付费

再往下细分,还可以拆分市场负责扩大用户量,运营负责延长生命周期,玩法策划负责留存,商业化策划负责付费等

再举一个栗子,如果你要做手机厂商的业务分析,同样手机厂商的目标也是盈利,但是公式却有些不同:

盈利 = 收入 - 成本 = 用户量 x 份额 x 客单价 x 复购率 - 销量 x 生产成本

由此我们可以得到一些分析思路,或者说是业务认知:

  • 在用户量能够持续扩大的时候,手机厂商们对客单价和份额往往不那么看重,而更加重视提升自身的规模
  • 当用户量不再增加,进入存量市场的时候,往往就需要通过扩大份额、提高单价、提高复购等方式来保证营收的增长

如果你关心最近的有手机市场的销量情况,就会发现目前在中国大陆手机市场已经是一个相对饱和,进入存量竞争的状态了,意味着各自的手机厂商的营销部门最关心的问题就是怎么能够扩大份额,提高单价和提高复购,所以这样的一份报告可能会更符合他们的需求:

  • 当前,国内手机市场每月活跃手机用户约为1000万,每月新增销量为100万,约10%的用户存在更换手机的需求
  • 更换手机的用户中,10%选择了a品牌,30%选择了b品牌,选择了我们品牌的用户占比约为5%,对比上个月提高了2.3%,说明选择我们品牌的用户比例越来越高
  • 分赛道来看,在高价段位,我们的占比有3%,在中端价位我们的占比约为8%,我们的主要优势在于中端价位,但是在高端价格的占比也在逐步提升

那么怎么找到这样一条公式呢?

大多数时候,这样的公式逻辑是比较好寻找的,这里简单总结几个方法

  • 乘法拆解。绝大多数商业场景下,最高层级的都是盈利或者用户量,我们可以结合金字塔原理的思维往下拆解,将达成目标的相关步骤或者环节拆分为一个个乘法因子
  • 团队分工。管理者们是最清楚业务的核心公式的,因此在部门划分,职能分工的环节中,总是会不经意按照这样的逻辑进行划分,可以参考职能分工来拆解
  • 业务KPI。KPI是最能直接反应核心业务逻辑的东西,因为KPI的制定本身就是围绕最高层级目标而逐级拆分的。永远别忘了反复确认业务方的KPI是什么
相关推荐
Leo.yuan7 小时前
数据量大Excel卡顿严重?选对报表工具提高10倍效率
数据库·数据分析·数据可视化·powerbi
海边散步的蜗牛12 小时前
学术论文写作丨机器学习与深度学习
人工智能·深度学习·机器学习·chatgpt·数据分析·ai写作
数模竞赛Paid answer14 小时前
2023年MathorCup数学建模A题量子计算机在信用评分卡组合优化中的应用解题全过程文档加程序
数学建模·数据分析·mathorcup
爱睡觉的咋14 小时前
GNN入门案例——KarateClub结点分类
人工智能·分类·数据挖掘·图神经网络
康谋自动驾驶15 小时前
康谋分享 | 确保AD/ADAS系统的安全:避免数据泛滥的关键
数据分析·自动驾驶·汽车
封步宇AIGC19 小时前
量化交易系统开发-实时行情自动化交易-3.4.1.2.A股交易数据
人工智能·python·机器学习·数据挖掘
m0_5236742119 小时前
技术前沿:从强化学习到Prompt Engineering,业务流程管理的创新之路
人工智能·深度学习·目标检测·机器学习·语言模型·自然语言处理·数据挖掘
封步宇AIGC21 小时前
量化交易系统开发-实时行情自动化交易-3.4.1.6.A股宏观经济数据
人工智能·python·机器学习·数据挖掘
幸运小新21 小时前
数据分析-Excel基础操作
数据分析
Moonquake_www1 天前
数据集划分
算法·数据分析