【江科大】STM32:定时器中断

文章目录

TIM(Timer)定时器

  • 功能:定时器可以对输入的时钟进行计数,并在计数值达到设定值时触发中断
  • HZ 和ms的单位转换:1ms = 1KHZ 1MZ = 1000KHZ 1ms = 1000us
  • 16位计数器、预分频器、自动重装寄存器(记录多少个时钟申请中断)的时基单元,在72MHz计数时钟下可以实现最大59.65s(72/65536/65536 ,再取倒数)的定时
    T :时钟分频后的周期 ,n:重装计数值 t:可计时的时长
    T = 1/f t = n*T (16位计数器,字节数65535)
  • 如果嫌不够长,Stm32支持级联模式,一个定时器的输出当作另一个计数器的输入。三个定时器级联,34万亿年
  • 不仅具备基本的定时中断功能,而且还包含
  1. 内外时钟源选择、
  2. 输入捕获(用来测量方波频率)、
  3. 输出比较(产生PWM波形,用于驱动舵机,直流电机)、
  4. 编码器接口(能够更加方便的读取正交编码器的输出波形,应用于在编码测试)、
  5. 主从触发模式等多种功能

根据复杂度和应用场景分为了高级定时器、通用定时器、基本定时器三种类型

基本定时器

通用定数器

高级定时器


时钟(时钟电路)的作用是什么:

单片机的运行需要一个脉冲信号,作为自己执行指令的触发信号。可以理解为,单片机收到一个脉冲,就执行一次或多次指令。

而这个脉冲是由单片机控制器中的时序电路发出,组成该电路最关键的器件晶振,是一种高精度,高稳定度的振荡器,街上一定的外界电路可以生成频率和峰值稳定的正弦波。这就给单片机提供了脉冲。

所以时钟就是给的单片机提供脉冲,从而使它执行指令。

51单片机和stm32

51不需要配置时钟,因为一个时钟开启所有功能都可以用。就相当只有一个总开关,且默认为开启状态。

32默认为关闭,不同的功能使用不同的时钟,因此需要用哪个就开启哪个时钟。

  • 内部时钟
    一般采用的都是11.0592MHZ的晶体振荡器作为震荡源,由于单片机内部带有振荡电路,所以外部只需要连接一个晶振和两个电容。对频率作微调。
  • 外部时钟:
    ETR,ITRX TLX
  • 时基单元:(构成了最基本的计数计时电路)

设置定时器触发中断普通方法:

普通方法:

设置定时器触发中断,每隔一段事件在程序中调用代码手动触发一次DAC转换,然后DAC输出 。但会影响主程序运行和其他中断的响应。

改进,定时器设计了主模式

因此定时器设计了主模式,使用它可以把这个更新事件映射到触发输出TRGO口上,触发TRGO直接接到DAC的触发转换引脚上,从而定时器的更新不需要触发中断来触发FAC转换了。

编码器接口:读取正交编码器的输出波形

捕获比较寄存器:输入捕获和比较电路共用

预分频器时序

缓冲寄存器

  • 计数器无预装时序(没有缓冲寄存器)

  • 计数器有预装时序 (有缓冲寄存器)

  • 缓冲寄存器的功能:

    实现每隔几个周期再更新一次。

    之前是,每个周期都更新,对更新信号再分频

  • 作用:

    缓冲寄存器才是真正起作用的寄存器,比如再某个时刻把预分频器寄存器由0该1,如果此时立刻改变分频系数,就会导致前半段和后半段分频不一致,缓存计数器的作用就是,改变后不会立刻生效,等待本次计数结束,产生更新时间,预分频的值才会传进去,下一轮计数才生效。

    包含有缓冲寄存器的有:

  1. 预分频器(psc)
  2. 自动重装寄存器
  3. REP寄存器
  4. 捕获比较寄存器(且它可以设置用还是不用)

计数器时序

如何判断是否使用预装功能

通过设置ARPE位

计数器无预装和有预装的区别

无预装:自动加载寄存器突然更改,将FF改为36

计数的目标值就从FF变为36,因此计数寄存器增加到目标值36就自动更新,重新计数

有预装:自动加载寄存器突然更改,当F5突然改为36,计数寄存器仍然

累计到F5,完成本次计数,才更新计算下一轮计数。

配置时钟树

主函数执行之前会先运行一个systemInit函数:用来配置时钟树

  • 左边是时钟的产生电路
    :四个振荡源
  • 右边是时钟的分配电路
    中间就是系统时钟,72MHZ
  • 外部石英振荡器比内部RC振荡器更稳定,都是给系统提供脉冲。

STL配置时钟树步骤:

1.选择内部8MHZ给系统时钟(绿色路线),系统暂时以8MZH运行。2.在开启外部时钟(红色路线)进入PLL锁相环进行倍频,8MHZ倍频9倍,得到72MHZ,等到锁相环输出稳定,选择锁相环输出为系统时钟,这样就将系统时钟从8MHZ切换到72MHZ。

如果外部时钟出问题,会出现什么现象?

程序的时钟慢了10倍。定时器设定为1S,结果10秒后才有中断。

因为没有了外部时钟,内部那就是以8MHZ运行,相比于72MHZ满了10倍。

(外部晶振引脚焊短路)

CSS:用来切换时钟。检测外部时钟的运行状态,如果外部出问题了,那就该时钟为内部,保证程序运行。

即便APB1选择的是,但是有分支判断它的分频系数,最终输出仍然是72MHZ,因此可以的出,不论是基本,通用还是高级定时器,内部基准时钟都是72MHZ。

定时器相关的库函数

c 复制代码
//时基单元
void TIM_DeInit(TIM_TypeDef* TIMx);
//定时器时基单元初始化,就是配置自动重装器,预分频器,计数器,第一个参数:选择某个定时器,
void TIM_TimeBaseInit(TIM_TypeDef* TIMx, TIM_TimeBaseInitTypeDef* TIM_TimeBaseInitStruct);
//可以把结构体变量赋默认值
void TIM_TimeBaseStructInit(TIM_TimeBaseInitTypeDef* TIM_TimeBaseInitStruct);
//运行控制:启动时基单元
void TIM_Cmd(TIM_TypeDef* TIMx, FunctionalState NewState);
//使能中断控制 第二个参数:哪个中断函数
void TIM_ITConfig(TIM_TypeDef* TIMx, uint16_t TIM_IT, FunctionalState NewState);


//时钟源的选择
//下面6个函数指的就是最左边的绿色那三个,选择时钟
void TIM_InternalClockConfig(TIM_TypeDef* TIMx);
//第二个参数,选择输入捕获通道
void TIM_ITRxExternalClockConfig(TIM_TypeDef* TIMx, uint16_t TIM_InputTriggerSource);
 //第二个参数:选择TIX具体的某个引脚,第三个:输入的极性 第四个:输入的滤波器(对于外部引脚,都会有极性选择和滤波器)
void TIM_TIxExternalClockConfig(TIM_TypeDef* TIMx, uint16_t TIM_TIxExternalCLKSource,
                                uint16_t TIM_ICPolarity, uint16_t ICFilter);
                        //外部触发预分频器
void TIM_ETRClockMode1Config(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler, uint16_t TIM_ExtTRGPolarity,
                             uint16_t ExtTRGFilter);
void TIM_ETRClockMode2Config(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler, 
                             uint16_t TIM_ExtTRGPolarity, uint16_t ExtTRGFilter);
                        //用来单独配置,预分频器,极性和滤波器的
void TIM_ETRConfig(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler, uint16_t TIM_ExtTRGPolarity,   uint16_t ExtTRGFilter);
c 复制代码
//单独设置预分频值的函数     第二个参数:选择写入模式,预分频器有缓冲寄存器,写入的值只有在更新事件后才有效。
   //所以这里的写入模式可以选择听从安排,在更新事件后生效,或写入后,手动产生一个更新事件,让这个值立刻生效。
void TIM_PrescalerConfig(TIM_TypeDef* TIMx, uint16_t Prescaler, uint16_t TIM_PSCReloadMode);
//用来改变计数器的计数模式
void TIM_CounterModeConfig(TIM_TypeDef* TIMx, uint16_t TIM_CounterMode);
//自动重装器预装功能配置,有预装还是不预装是可以选择的
void TIM_ARRPreloadConfig(TIM_TypeDef* TIMx, FunctionalState NewState);
//给计数器写入一个值
void TIM_SetCounter(TIM_TypeDef* TIMx, uint16_t Counter);
//给自动重装器写入一个值
void TIM_SetAutoreload(TIM_TypeDef* TIMx, uint16_t Autoreload);
//获取计数器的值
uint16_t TIM_GetCounter(TIM_TypeDef* TIMx);
//获取预分频值
uint16_t TIM_GetPrescaler(TIM_TypeDef* TIMx);
//获取标志位和清楚标志位
FlagStatus TIM_GetFlagStatus(TIM_TypeDef* TIMx, uint16_t TIM_FLAG);
void TIM_ClearFlag(TIM_TypeDef* TIMx, uint16_t TIM_FLAG);
ITStatus TIM_GetITStatus(TIM_TypeDef* TIMx, uint16_t TIM_IT);
void TIM_ClearITPendingBit(TIM_TypeDef* TIMx, uint16_t TIM_IT);

初始化定时器

定时器外部时钟

相关推荐
国产化嵌入式平台解决方案1 小时前
【服务器主板】定制化:基于Intel至强平台的全新解决方案
嵌入式硬件·intel·服务器主板·至强处理器·定制化
不能只会打代码1 小时前
32单片机从入门到精通之硬件架构——内核与外设(一)
单片机·嵌入式硬件·硬件架构
陌夏微秋4 小时前
STM32单片机芯片与内部47 STM32 CAN内部架构 介绍
数据库·stm32·单片机·嵌入式硬件·架构·信息与通信
7yewh15 小时前
Linux驱动开发 IIC I2C驱动 编写APP访问EEPROM AT24C02
linux·arm开发·驱动开发·嵌入式硬件·嵌入式
上海易硅智能科技局有限公司15 小时前
AG32 MCU 的电机控制方案
单片机·嵌入式硬件
程序员JerrySUN16 小时前
Yocto 项目 - 共享状态缓存 (Shared State Cache) 机制
linux·嵌入式硬件·物联网·缓存·系统架构
嵌入式小强工作室18 小时前
stm32能跑人工智能么
人工智能·stm32·嵌入式硬件
MikelSun18 小时前
电压控制环与电流控制环
单片机·嵌入式硬件·物联网
陌夏微秋19 小时前
STM32单片机芯片与内部45 UART 不定长度接收 标志位结束 定时器超时 串口空闲中断
stm32·单片机·嵌入式硬件·信息与通信·智能硬件
挥剑决浮云 -20 小时前
STM32学习之 按键/光敏电阻 控制 LED/蜂鸣器
c语言·经验分享·stm32·单片机·嵌入式硬件·学习