【学习】focal loss 损失函数

focal loss用于解决正负样本的不均衡情况

通常我们需要预测的正样本要少于负样本,正负样本分布不均衡会带来什么影响?主要是两个方面。

  1. 样本不均衡的话,训练是低效不充分的。因为困难的正样本数量较少,大部分时间都在学习没有用的负样本。
  2. 简单的负样本可能会压倒训练,导致训练退化。比如10000个人里面只有10个人为正义发声,其余的人都为邪恶发声,那么正义的声音就会被邪恶的声音淹没。
    比如假如一张图片上有10个正样本,每个正样本的损失值是3,那么这些正样本的总损失是10x3=30。而假如该图片上有10000个简单易分负样本,尽管每个负样本的损失值很小,假设是0.1,那么这些简单易分负样本的总损失是10000x0.1=1000,那么损失值要远远高于正样本的损失值。所以如果在训练的过程中使用全部的正负样本,那么它的训练效果会很差。

focal loss的公式

首先看交叉熵损失函数:

其中,y是样本的标签值,而p是模型预测某一个样本为正样本的概率,对于真实标签为正样本的样本,它的概率p越大说明模型预测的越准确,对于真实标签为负样本的样本,它的概率p越小说明模型预测的越准确,

上面公式可以变化如下:

注意:这里的log(x)其实就是ln(x)

如果我们定义Pt 为如下形式:

那么公式可以继续转化为:

而对于focal loss来讲,就是要解决正负样本的权重问题。

focal loss 公式:

focal loss为什么起作用

参考b站:https://www.bilibili.com/video/BV1YX4y1J7Te/?spm_id_from=333.788&vd_source=4564794c2a933ffdf65d980ee25648f1

相关推荐
richxu2025100120 分钟前
嵌入式学习之路>单片机核心原理篇>(14) ARM 架构
arm开发·单片机·学习
Keep_Trying_Go25 分钟前
统一的人群计数训练框架(PyTorch)——基于主流的密度图模型训练框架
人工智能·pytorch·python·深度学习·算法·机器学习·人群计数
YJlio29 分钟前
BgInfo 学习笔记(11.5):多种输出方式(壁纸 / 剪贴板 / 文件)与“更新其他桌面”实战
笔记·学习·c#
知行力31 分钟前
【GitHub每日速递 20251215】微软开源12周26课机器学习入门课程,多语言支持还能离线学!
机器学习·开源·github
智驱力人工智能39 分钟前
加油站静电夹检测 视觉分析技术的安全赋能与实践 静电夹检测 加油站静电夹状态监测 静电接地报警器检测
人工智能·深度学习·算法·安全·yolo·边缘计算
风和先行1 小时前
androidStudio gradle 配置学习总结
学习
YJlio1 小时前
桌面工具学习笔记(11.4):BgInfo + Desktops + ZoomIt 组合拳——演示与排障环境一键到位
笔记·学习·自动化
Small___ming1 小时前
【人工智能数学基础】标准贝叶斯公式的一般化推导:从单一条件到任意多条件
人工智能·机器学习·概率论
玩具猴_wjh1 小时前
12.15 学习笔记
笔记·学习
shenghaide_jiahu1 小时前
数学分析简明教程——6.3
学习