目录
[C. Build Permutation](#C. Build Permutation)
[编辑 思路解析:](#编辑 思路解析:)
C. Build Permutation
题目描述:
思路解析:
先证明在任何情况下答案均存在。
假设我们所求的为 m m+1 m+2.....n 的排列,我们称不小于n的最小平方数为h,不大于n的最大平方数为w。那么h和w之间的差值为根号w+根号h一定小于n,则 h <= 2 * n,那么 h-n <= n.
因此pi = h-i,我们可以将它填充为h h-k<=i<=k,利用这种方法可以递归地把k还原为-1
代码实现:
import java.io.*;
import java.math.BigInteger;
import java.util.*;
public class Main {
static int[] arr;
public static void main(String[] args) throws IOException {
int t = input.nextInt();
for (int o = 0; o < t; o++) {
int n = input.nextInt();
arr = new int[n];
recurse(n - 1);
for (int i = 0; i < n; i++) {
pw.print(arr[i] + " ");
}
pw.println();
}
pw.flush();
pw.close();
br.close();
}
public static void recurse(int r){
if (r < 0) return;
int t = (int) Math.sqrt(2 * r);
t *= t;
int l = t - r;
recurse(l - 1);
for (; l <= r; l++, r--) {
arr[l] =r;
arr[r] = l;
}
}
static PrintWriter pw = new PrintWriter(new OutputStreamWriter(System.out));
static Input input = new Input(System.in);
static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
static class Input {
public BufferedReader reader;
public StringTokenizer tokenizer;
public Input(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public String nextLine() {
String str = null;
try {
str = reader.readLine();
} catch (IOException e) {
// TODO 自动生成的 catch 块
e.printStackTrace();
}
return str;
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public Double nextDouble() {
return Double.parseDouble(next());
}
public BigInteger nextBigInteger() {
return new BigInteger(next());
}
}
}