风速预测 | Python基于CEEMDAN-CNN-Transformer+ARIMA的风速时间序列预测

目录

效果一览



基本介绍

CEEMDAN-CNN-Transformer+ARIMA是一种用于风速时间序列预测的模型,结合了不同的技术和算法。收集风速时间序列数据,并确保数据的质量和完整性。这些数据通常包括风速的观测值和时间戳。CEEMDAN分解:使用集合经验模态分解(CEEMDAN)将风速时间序列分解为多个本征模态函数(IMF)。CEEMDAN是一种数据驱动的分解方法,能够提取信号中的不同频率成分。CNN特征提取:对于每个IMF,使用卷积神经网络(CNN)来提取特征。CNN可以学习到时间序列中的局部模式和特征。Transformer模型:将CNN提取的特征作为输入,使用Transformer模型进行序列建模和预测。Transformer是一种强大的序列建模算法,能够捕捉序列中的长程依赖关系。

ARIMA模型:应用自回归综合移动平均(ARIMA)模型进行建模和预测。ARIMA是一种经典的时间序列模型,适用于捕捉序列的趋势和季节性。

需要适当的数据处理和参数调整来获得良好的预测性能。同时,模型的性能也取决于数据的质量、特征工程的设计以及模型的参数设置等因素。在实际应用中,可能需要进行反复试验和优化才能得到最佳的结果。

完备集合经验模态分解CEEMDAN与混合预测模型(CNN-Transformer + ARIMA)的方法,以提高时间序列数据的预测性能。该访法的核心是使用CEEMDAN算法对时间序列进行分解,接着利用CNN-Transformer模型和ARIMA模型对分解后的数据进行建模,最终通过集成方法结合两者的预测

结果。包括风速数据,以及已经生成制作好的经过CEEMDAN分解的风速数据集、标签集,对应代码均可以运行,还有CEEMDAN解示例CNN-Transformer + ARIMA模型,有着更小的MSE, MAE,效果特别明显包括数据CEEMDAN预处理的代码,和完整CNN-Transformer模型预测代码、ARIMA预测模型代码、可视化代码。

程序设计

  • 完整程序和数据获取方式:私信博主回复Python基于CEEMDAN-CNN-Transformer+ARIMA的风速时间序列预测

参考资料

1\] http://t.csdn.cn/pCWSp \[2\] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501 \[3\] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

相关推荐
编程武士1 小时前
从50ms到30ms:YOLOv10部署中图像预处理的性能优化实践
人工智能·python·yolo·性能优化
我的xiaodoujiao2 小时前
Windows系统Web UI自动化测试学习系列2--环境搭建--Python-PyCharm-Selenium
开发语言·python·测试工具
_pinnacle_3 小时前
打开神经网络的黑箱(三) 卷积神经网络(CNN)的模型逻辑
人工智能·神经网络·cnn·黑箱·卷积网络
傻啦嘿哟4 小时前
Python SQLite模块:轻量级数据库的实战指南
数据库·python·sqlite
Q_Q5110082854 小时前
python+django/flask+uniapp基于微信小程序的瑜伽体验课预约系统
spring boot·python·django·flask·uni-app·node.js·php
XueminXu4 小时前
Python读取MongoDB的JSON字典和列表对象转为字符串
python·mongodb·json·pymongo·mongoclient·isinstance·json.dumps
techdashen4 小时前
12分钟讲解Python核心理念
开发语言·python
jie*5 小时前
小杰机器学习(nine)——支持向量机
人工智能·python·机器学习·支持向量机·回归·聚类·sklearn
闭着眼睛学算法5 小时前
【华为OD机考正在更新】2025年双机位A卷真题【完全原创题解 | 详细考点分类 | 不断更新题目 | 六种主流语言Py+Java+Cpp+C+Js+Go】
java·c语言·javascript·c++·python·算法·华为od
极度畅想5 小时前
【脑电分析系列】第24篇:运动想象BCI系统构建:CSP+LDA/SVM与深度学习方法的对比研究
transformer·eeg·bci·运动想象·脑电分析·意念控制