线性代数基础【6】二次型

第一节、二次型的基本概念及其标准型

一、基本概念

①二次型

含n个变量x1,x2,...,xn,且每项都是2次的齐次多项式

②标准二次型

只含有平方项不含交叉项的二次型称为标准二次型

③二次型的标准化

设f(X)=X^TAX 为一个二次型,经过可逆的线性变换X=PY(即P为可逆矩阵)把二次型f(X)=X^TAX化为

这个过程称为二次型的标准化

注意:

(1)任何一个二次型f(x1,x2,...,xn)都可以表示为矩阵形式,且A^T = A,其中X^TAX 为标准二次型的充分必要条件是A为对角阵;X^TAX是非标准二次型的充分必要条件是A是对称而非对角的矩阵

(2)二次型X^TAX标准化的过程即实对称矩阵A对角化的过程,二次型标准化过程必须遵循两点原则:

①线性变换X=PY中的矩阵P一定为可逆矩阵

②P^TAP为对角矩阵

(4)(惯性定理)二次型的标准形不唯一,但标准形中正、负系数的个数是唯一确定的

④规划二次型

系数为1和-1的标准形,称为二次型的规范形

⑤可逆的坐标变换

⑥矩阵合同

设A,B为n阶实对称矩阵,若存在可逆矩阵P,使得P^TAP=B,称矩阵A与B合同,记为A≌B.

注意:

(1)经过可逆线性变换的二次型的矩阵与原矩阵之间合同

(2)矩阵合同关系具有:

①A≌A(反身性)

②若A≌B,则B≌A(对称性)

③若A≌B,B≌C,则A≌C(传递性)

(3)要正确区分矩阵的三大关系:即等价关系、相似关系、合同关系

①矩阵等价

设A,B为同型矩阵(不一定为方阵),若A经过有限次初等变换化为B,称A与B等价

判别法:

方法一:设A,B为同型矩阵,则A,B等价的充分必要条件是r(A)=r(B)

方法二:设A,B为同型矩阵,则A,B等价的充分必要条件是存在可逆矩阵P,Q,使得PAQ=B

②矩阵相似

设A,B为n阶矩阵,若存在可逆矩阵P,使得P^-1AP=B,称A与B相似,记为A~B

判别法:

设A,B为n阶矩阵,若A,B的特征值相同且A,B都可相似对角化,则A~B

③矩阵合同

设A,B为n阶实对称矩阵,若存在可逆矩阵P,使得P^TAP=B,称A与B合同,记为A≌B

判别法:设A,B为实对称矩阵,则A≌B的充分必要条件是A,B的正、负、零特征值个数相同

二、基本定理

三、二次型标准化方法

①配方法

即通过配方的方法把二次型化为若干部分的平方和与差,然后进行变换的方法

②正交交换法

即可逆线性变换X=QY中,Q是正交矩阵,且经过变换X=QY可把二次型化为标准形的变换

第二节、正定矩阵与正定二次型

一、基本概念

(1)例子

(2)正定二次型概念

对二次型f(x1,x2,...,xn)=X^TAX,若对任意的X≠0,总有 X^TAX>0,称 X^TAX为正定二次型,A称为正定矩阵

一、正定二次型的判别

定理1 二次型X^TAX为正定二次型的充分必要条件是A的特征值全为正数

定理2 二次型X^TAX 为正定二次型的充分必要条件是A的顺序主子式都大于零,即

定理3 设A^T=A, 则A为正定矩阵的充分必要条件是存在可逆矩阵B,使得A=B^TB

定理4 设A^T=A,则A为正定矩阵的充分必要条件是A与E合同.

定理5 设A^T=A,则A正定的充分必要条件是A的正性指数为n

注意:

(1)二次型f(X)=X^TAX 正定的必要条件是:aij>0(i=1,2,...,n);|A|>0

(2)若A是正定矩阵,则A一定是可逆矩阵

(3)若A是正定矩阵,则A^-1 及 A^*是正定矩阵

(4)若A,B都是正定矩阵,则 A+B 是正定矩阵

相关推荐
易木木木响叮当2 天前
有限元方法中的数值技术:行列式、求逆、矩阵方程
线性代数·矩阵
厦门辰迈智慧科技有限公司4 天前
现代化水库运行管理矩阵建设的要点
运维·网络·物联网·线性代数·安全·矩阵·监测
{⌐■_■}5 天前
【MongoDB】简单理解聚合操作,案例解析
数据库·线性代数·mongodb
盛世隐者7 天前
【高等数学】第八章 向量代数与空间解析几何——第三节 平面及其方程
高等数学
盛世隐者7 天前
【线性代数】线性方程组与矩阵——行列式
线性代数
盛世隐者7 天前
【线性代数】线性方程组与矩阵——(1)线性方程组与矩阵初步
线性代数
盛世隐者8 天前
【线性代数】线性方程组与矩阵——(3)线性方程组解的结构
线性代数
盛世隐者8 天前
【线性代数】线性方程组与矩阵——(2)矩阵与线性方程组的解
线性代数
无水先生8 天前
特征值和特征向量的直觉
线性代数·矩阵
云云3218 天前
Lazada东南亚矩阵营销破局:指纹手机如何以“批量智控+数据中枢”重构运营生态
大数据·人工智能·线性代数·智能手机·矩阵·重构