《动手学深度学习(PyTorch版)》笔记3.5

注:书中对代码的讲解并不详细,本文对很多细节做了详细注释。另外,书上的源代码是在Jupyter Notebook上运行的,较为分散,本文将代码集中起来,并加以完善,全部用vscode在python 3.9.18下测试通过。

Chapter3 Linear Neural Networks

3.5 Image Classification Dataset

复制代码
import torch
import torchvision
import time
import matplotlib.pyplot as plt
import numpy as np 
from torch.utils import data
from torchvision import transforms
from d2l import torch as d2l

def get_fashion_mnist_labels(labels):#@save
    """返回数据集的文本标签"""
    text_labels=['t-shirt','trouser','pullover','dress','coat','sandal','shirt','sneaker','bag','ankle boot']
    return [text_labels[int(i)] for i in labels]

def show_images(imgs,num_rows,num_cols,titles=None,scale=1.5):#@save
    """绘制图像列表"""
    figsize=(num_cols*scale,num_rows*scale)
    _,axes=d2l.plt.subplots(num_rows,num_cols,figsize=figsize)# The _ is a convention in Python to indicate a variable that is not going to be used. In this case, it is used to capture the first return value of subplots, which is the entire figure.
    axes=axes.flatten()
    #enumerate意为"枚举"
    for i ,(ax,img) in enumerate(zip(axes,imgs)):#The enumerate() function is used to get both the index i and the paired values.
        if torch.is_tensor(img):
            ax.imshow(img.numpy())
        else:
            ax.imshow(img)
        ax.axes.get_xaxis().set_visible(False)
        ax.axes.get_yaxis().set_visible(False)
        if titles:
            ax.set_title(titles[i])
    return axes

batch_size=256

def get_dataloader_workers():#@save
    """使用4个子进程来读取数据"""
    """每个子进程会预加载一批数据,并将数据放入一个共享内存区域。当主进程需要数据时,它可以直接从共享内存区域中获取,而不需要等待数据的读取和预处理。这样,主进程可以在处理当前批次的数据时,子进程已经在后台加载下一批数据,从而提高数据加载的效率。"""
    return 4

#定义一个计时器
class Timer:#@save
    def __init__(self) :
        self.times=[]
        self.start()
        
    def start(self):
        """启动计时器"""
        self.tik=time.time()
        
    def stop(self):
        """停止计时器并将时间记录在列表中"""
        self.times.append(time.time()-self.tik)
        return self.times[-1]

    def avg(self):
        """返回平均时间"""
        return sum(self.times)/len(self.times)
    
    def sum(self):
        """返回总时间"""
        return sum(self.times)
    
    def cumsum(self):
        """返回累计时间"""
        return np.array(self.times).cumsum().tolist()
    
def load_fashion_mnist(batch_size,resize=None):#@save
    """下载Fashion-MNIST数据集到内存中"""
    trans = [transforms.ToTensor()]
    #将PIL图像转为tensor格式(32位浮点数),并除以255使得所有像素的数值均为0-1
    #the "transforms" module in PyTorch's torchvision library is used to define a sequence of image transformations
    if resize:
        trans.insert(0,transforms.Resize(resize))
    trans=transforms.Compose(trans)
    #"Compose" transformation allows you to apply a sequence of transformations to an input. The resulting trans object can be applied to images or datasets.
    mnist_train=torchvision.datasets.FashionMNIST(root="./data",train=True,transform=trans,download=True)
    mnist_test=torchvision.datasets.FashionMNIST(root="./data",train=False,transform=trans,download=True)
    #"train=True"表示加载训练集,"train=False"表示加载测试集。
    #print(len(mnist_train),len(mnist_test))
    #每个输入的图像高度和宽度均为28像素,并且是灰度图像,通道数为1,下文将高度为h像素,宽为w像素的图像的的图像的形状记为(h,w)
    #print(mnist_train[0][0].shape)
    #mnist_train[0][0]指的是第一个图像数据的张量,mnist_train[0][1]指的是第一个图像的标签
    return (data.DataLoader(mnist_train,batch_size,shuffle=True,
                            num_workers=get_dataloader_workers()),
            data.DataLoader(mnist_test,batch_size,shuffle=False,
                            num_workers=get_dataloader_workers()))
    # The DataLoader is responsible for loading batches of data, shuffling the data (for training), and using multiple workers for data loading ("num_workers" parameter).
    # "shuffle=False" for mnist_test ensures that the test data remains in its original order during evaluation.

#X,y=next(iter(data.DataLoader(mnist_train,batch_size=18)))
#show_images(X.reshape(18,28,28),2,9,titles=get_fashion_mnist_labels(y))
#plt.show()

if __name__ == '__main__':
    train_iter, test_iter = load_fashion_mnist(32, resize=64)
    #timer = Timer()
    #for X, y in train_iter:
    #    continue
    #print(f'{timer.stop():.2f} sec')
    for X,y in train_iter:
        print(X.shape,X.dtype,y.shape,y.dtype)#dtype即data type
        break
相关推荐
wdfk_prog1 小时前
[Linux]学习笔记系列 -- [drivers][I2C]I2C
linux·笔记·学习
那个村的李富贵1 小时前
昇腾CANN跨行业实战:五大新领域AI落地案例深度解析
人工智能·aigc·cann
集简云-软件连接神器1 小时前
技术实战:集简云语聚AI实现小红书私信接入AI大模型全流程解析
人工智能·小红书·ai客服
松☆1 小时前
深入理解CANN:面向AI加速的异构计算架构
人工智能·架构
rainbow7242441 小时前
无基础学AI的入门核心,从基础工具和理论开始学
人工智能
0思必得01 小时前
[Web自动化] Selenium处理滚动条
前端·爬虫·python·selenium·自动化
子榆.1 小时前
CANN 与主流 AI 框架集成:从 PyTorch/TensorFlow 到高效推理的无缝迁移指南
人工智能·pytorch·tensorflow
七月稻草人1 小时前
CANN生态ops-nn:AIGC的神经网络算子加速内核
人工智能·神经网络·aigc
2501_924878731 小时前
数据智能驱动进化:AdAgent 多触点归因与自我学习机制详解
人工智能·逻辑回归·动态规划
芷栀夏1 小时前
CANN开源实战:基于DrissionPage构建企业级网页自动化与数据采集系统
运维·人工智能·开源·自动化·cann