datawhale 大模型学习 第六章-大模型之Adaptation(未完)

一、为什么需要Adaptation

1.1 简介

从语言模型的训练方式来说,例如GPT-3,训练语料通常是海量的,各种领域的,不针对任何特定任务的文本信息。

这种方法的优点在于模型具有广泛的适用性,但也带来了一些挑战。比如下游任务的多样性,不同的下游任务与语言模型的预训练方式可以非常不同:

  • 格式不同 :BERT训练过程中使用了MASK标记,而许多下游任务可能并不使用这些标记。
    自然语言推理任务(NLI)涉及两个句子的比较以产生单一的二进制输出
  • 主题变化:专业领域的时候,需要的文本或者话术都需要集中在专业领域。
  • **时间转变:**下游任务中出现了预训练中没有出现过的knowledge。原因有:1. 训练时多数据集已经和预测数据集不同。2. 下游任务数据集不能公开使用

1.2 大模型Adaptation训练一般流程

  1. 准备一个预训练大模型(pre-trained LM) :适配阶段的开始,我们已经有了一个预训练的语言模型,用参数来表示
  2. 下游任务数据集(downstream task dataset) :下游任务的训练集。例如文本分类任务,由输入x和输出y组成:
  3. 适配参数(Adaptation Parameters) :为了使得预训练大模型(LM)适配下游任务,需要定义参数,调整参数以后使得大模型在下游任务上面表现更好
  4. 任务损失函数(Task Loss Function):损失函数 ℓtask 来衡量模型在下游任务上的表现。例如,交叉熵损失是一种常见的选择,用于衡量模型预测的概率分布与真实分布之间的差异。
  5. 优化问题(Optimization Problem):根据下面的方式优化,找到最好的

二、几种主流的Adaptaion方法

2.1 Probing

  • probing引入了新的模型参数,通常是线性层或者浅的网络层
  • probing通常用来探究模型得到的representation的意义,比如如果 模型的probe能预测词性,那么就存储了词性信息。
  • 在adaptation中,通过模型最后一层的输出来训练probe(prediction head)
  • 主要应用于encoder---only模型,但也能用骨decoder-only模型

2.2 Fine-tuning

  • 使用全部的预训练参数作为初始化:
    • 参数包括模型参数和prediction head参数
    • optimizer sate和预训练无关,会在训练过程中更新丢弃
    • 学习率至少比预训练少一个数量级(例如:预训练阶段的学习率是1*e-3,那么fine-tuning阶段的学习率是1*e-4),并且时间短。
  • 根据不同的下游任务都要存储特殊化的模型,expensive。
  • 通常比probing表现好

2.3 Lightweight Fine-tuning

轻量finetune 目的是提升模型的表现能力,通过一次full fine通用适配下游任务,而不需要针对每个下游任务finetune

2.3.1 常见的三中方法

相关推荐
musenh12 分钟前
css样式学习
css·学习·css3
IT_Beijing_BIT15 分钟前
TensorFlow Keras
人工智能·tensorflow·keras
mit6.82420 分钟前
[手机AI开发sdk] 安卓上的Linux环境
人工智能·智能手机
Larry_Yanan24 分钟前
QML学习笔记(五十)QML与C++交互:QML中单例C++对象
开发语言·c++·笔记·qt·学习·ui·交互
im_AMBER25 分钟前
算法笔记 09
c语言·数据结构·c++·笔记·学习·算法·排序算法
张较瘦_36 分钟前
[论文阅读] AI + 教育 | AI赋能“三个课堂”的破局之道——具身认知与技术路径深度解读
论文阅读·人工智能
小雨青年1 小时前
Cursor 项目实战:AI播客策划助手(二)—— 多轮交互打磨播客文案的技术实现与实践
前端·人工智能·状态模式·交互
西西弗Sisyphus1 小时前
线性代数 - 初等矩阵
人工智能·线性代数·机器学习
王哈哈^_^1 小时前
【数据集】【YOLO】【目标检测】共享单车数据集,共享单车识别数据集 3596 张,YOLO自行车识别算法实战训推教程。
人工智能·算法·yolo·目标检测·计算机视觉·视觉检测·毕业设计
Nan_Shu_6141 小时前
学习:JavaScript(5)
开发语言·javascript·学习