OpenCV使用基础、技巧

OpenCV概述与安装

视觉概述

人类的视觉能够很轻易地从图像中识别出内容。但是,计算机视觉不会像人类视觉那样能够对图像进行感知和识别,更不会自动控制焦距和光圈,而是把图像解析为按照栅格状排列的数字。

这些按照栅格状排列的数字包含大量的噪声,噪声在图像上常表现为引起较强视觉效果的孤立像素点或像素块,使得图像模糊不清。因此,噪声是计算机视觉面临的一个难题。要想让图片变得清晰,就需要对抗噪声。

计算机视觉使用统计的方法对抗噪声,例如,计算机视觉虽然很难通过某个像素或者这个像素的相邻像素判断这个像素是否在图像主体的边缘上,但是如果对图像某一区域内的像素做统计,那么上述判断就变得简单了,即在指定区域内,图像主体的边缘应该表现为一连串独立的像素,而且这一连串像素的方向应该是一致的。

OpenCV常用模块
模块 介绍
Core 包函OpenCV库的基础结构以及基本操作
Improc 包函基本的图像转换,包括滤波、卷积
Highgui 轻量级的UI工具包
Video 读写视频流的方法
Calib3d 校准单个、双目以及多个相机的算法实现
Feature2d 检测、描述、匹配特征点算法
Objecttect 检测待定目标的算法
ML 包含大量机器学习算法
Flann 多维空间的聚类和搜索
GPU 包含在CUDA GPU上优化实现的方法
Photo 计算机摄影学的一些方法
Stitching 图像拼接流程的实现
dnn 深度神经网络模块
安装

安装Python这里我使用的是Anaconda

  1. 创建虚拟环境

    conda create --name 环境名称 python=3.8

  2. 进入环境

    activate 环境名称

  3. 修改源

    conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/

    conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/

    conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/

  4. 查看源如下图既可

    conda config --show channels

  5. 安装需要的依赖

    pip install numpy pandas matplotlib opencv-python

  6. 查看是否安装成功

    pip list

  1. 测试一下是否安装成功

    准备一张图片 这里我命名为image.jpg

    python 复制代码
    import cv2
    image = cv2.imread("image.jpg")
    print(image)

    输出类似如下:

OpenCV基础-图像数字化

读取图像:

python 复制代码
# 获取彩色图像
image = cv2.imread("image.jpg")
方法 作用
image.shape (垂直像素,水平像素,通道数)
image.size 图像包含的像素个数
image.dtype 数据类型

获取某一像素的RGB值:

python 复制代码
print(image[231, 128])
# B通道
print(image[231, 128, 0])
# G通道
print(image[231, 128, 1])
# R通道
print(image[231, 128, 2])

输出:

[59 72 46]

59

72

46

即坐标[231, 128]上的像素的RGB值由[59 72 46]组成

拆分通道:

python 复制代码
image = cv2.imread("image.jpg")
cv2.imshow("image", image)
b, g, r = cv2.split(image)
cv2.imshow("B", b) # 显示B通道图像
cv2.imshow("G", g) # 显示G通道图像
cv2.imshow("R", r) # 显示R通道图像

合并通道:

python 复制代码
image = cv2.imread("image.jpg")
b, g, r = cv2.split(image)
rgb = cv2.merge([r, g, b]) # 按R→G→B顺序合并
cv2.imshow("RGB", rgb)

创建纯黑色的图像:

python 复制代码
width = 800
height = 600
img = np.zeros((height, width), np.uint8)
cv2.imshow("img", img)

拼接图像:

python 复制代码
image1 = cv2.imread("image1.jpg")
image2 = cv2.imread("image2.jpg")
# 水平拼接两个图像
img_h = np.hstack((image1, image2))
# 垂直拼接两个图像
img_v = np.vstack((image1, image2))
cv2.imshow("img_h", img_h)
cv2.imshow("img_v", img_v)

使用OpenCV绘制图形

绘制黄色的线:

python 复制代码
# 绘制一个黑色的背景画布
canvas = np.zeros((300, 300, 3), np.uint8)
# 在画布上,绘制一条起点坐标为(150, 50)、终点坐标为(150, 250),黄色的,线条宽度为20的线段
canvas = cv2.line(canvas, (150, 50), (150, 250), (0, 255, 255), 20)

绘制矩形:

python 复制代码
# 在画布上绘制一个左上角坐标为(65,65),右下角坐标为(180,150),青色的,线条宽度为20的矩形边框
canvas = cv2.rectangle(canvas, (65, 65), (200, 150), (255, 255, 0), 20)

绘制圆形:

python 复制代码
# 在画布上,绘制一个圆心坐标为(150, 50),半径为40,黄色的实心圆形
canvas = cv2.circle(canvas, (150, 50), 40, (0, 255, 255), -1)

绘制多边形:

python 复制代码
# 根据坐标[100, 50], [200, 50], [250, 250], [50, 250],绘制一个闭合的,红色的,线条宽度为5的等腰梯形边框
canvas = cv2.polylines(canvas, [np.array([[100, 50], [200, 50], [250, 250], [50, 250]], np.int32)], True, (0, 0, 255), 5)

绘制文字:

python 复制代码
# 字体大小为2,线条颜色是绿色,线条宽度为5
cv2.putText(canvas, "Hello World", (20, 70), cv2.FONT_HERSHEY_TRIPLEX, 2, (0, 255, 0), 5)

OpenCV图像变换

图像缩放:

python 复制代码
img = cv2.imread("image.png")
# 宽100像素、高100像素的大小进行缩放
dst = cv2.resize(img, (100, 100))

按比例缩放:

python 复制代码
# 将宽缩小到原来的1/3、高缩小到原来的1/2
dst = cv2.resize(img, None, fx=1 / 3, fy=1 / 2)
# 将宽高扩大2倍
dst = cv2.resize(img, None, fx=2, fy=2)

图像翻转:

沿X轴翻转:

python 复制代码
dst1 = cv2.flip(img, 0)

沿Y轴翻转:

python 复制代码
dst2 = cv2.flip(img, 1) 

同时沿X轴、Y轴翻转:

python 复制代码
dst3 = cv2.flip(img, -1)

图像旋转:

python 复制代码
# 图像像素行数
rows = len(img)
# 图像像素列数
cols = len(img[0])
# 图像的中心点
center = (rows / 2, cols / 2)
# 以图像为中心,逆时针旋转30度,缩放0.8倍
M = cv2.getRotationMatrix2D(center, 30, 0.8)
dst = cv2.warpAffine(img, M, (cols, rows))

OpenCv图形检测

绘制图像轮廓:

python 复制代码
img = cv2.imread("image.png")
# 彩色图像转为变成单通道灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 灰度图像转为二值图像
t, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
# 检测图像中出现的所有轮廓,记录轮廓的每一个点
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
# 绘制所有轮廓,宽度为5,颜色为红色
cv2.drawContours(img, contours, -1, (0, 0, 255), 5)

为轮廓添加矩形框:

python 复制代码
# 获取第一个轮廓的最小矩形边框,记录坐标和宽高
x, y, w, h = cv2.boundingRect(contours[0])
# 绘制红色矩形
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 255), 2)

为轮廓添加圆形框:

python 复制代码
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
# 获取最小圆形边框的圆心点和半径
center, radius = cv2.minEnclosingCircle(contours[0])
# 圆心点横坐标转为近似整数
x = int(round(center[0]))
# 圆心点纵坐标转为近似整数
y = int(round(center[1]))
cv2.circle(img, (x, y), int(radius), (0, 0, 255), 2)

Canny边缘检测:

python 复制代码
img = cv2.imread("image.png")
r1 = cv2.Canny(img, 10, 50)

直线检测:

python 复制代码
img = cv2.imread("image.jpg")
# 复制原图
o = img.copy()
# 使用中值滤波进行降噪
o = cv2.medianBlur(o, 5)
gray = cv2.cvtColor(o, cv2.COLOR_BGR2GRAY)
binary = cv2.Canny(o, 50, 150)  # 绘制边缘图像
# 检测直线,精度为1,全角度,阈值为15,线段最短100,最小间隔为18
lines = cv2.HoughLinesP(binary, 1, np.pi / 180, 15, minLineLength=100, maxLineGap=18)
for line in lines:  # 遍历所有直线
    x1, y1, x2, y2 = line[0]  # 读取直线两个端点的坐标
    cv2.line(img, (x1, y1), (x2, y2), (0, 0, 255), 2)  # 在原始图像上绘制直线

圆环检测:

python 复制代码
img = cv2.imread("image.jpg")
o = img.copy()
o = cv2.medianBlur(o, 5)
gray = cv2.cvtColor(o, cv2.COLOR_BGR2GRAY)  # 从彩色图像变成单通道灰度图像
# 检测圆环,圆心最小间距为70,Canny最大阈值为100,投票数超过25。最小半径为10,最大半径为50
circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1, 70, param1=100, param2=25, minRadius=10, maxRadius=50)
circles = np.uint(np.around(circles))  # 将数组元素四舍五入成整数
for c in circles[0]:  # 遍历圆环结果
    x, y, r = c  # 圆心横坐标、纵坐标和圆半径
    # 绘制圆环
    cv2.circle(img, (x, y), r, (0, 0, 255), 3)
    # 绘制圆心
    cv2.circle(img, (x, y), 2, (0, 0, 255), 3)

OpenCV处理视频

开启摄像头:

python 复制代码
import cv2
# 打开笔记本内置摄像头
capture = cv2.VideoCapture(0)
while (capture.isOpened()):
    # 从摄像头中实时读取视频
    retval, image = capture.read()
    # 在窗口中显示读取到的视频
    cv2.imshow("Video", image)
    # 窗口的图像刷新时间为1毫秒
    key = cv2.waitKey(1)
    # 按下空格就终止
    if key == 32:
        break
capture.release()
cv2.destroyAllWindows()

彩色视频转换为灰度视频:

python 复制代码
import cv2
capture = cv2.VideoCapture(0, cv2.CAP_DSHOW)
while (capture.isOpened()):
    retval, image = capture.read()
    # 把彩色视频转换为灰度视频
    image_Gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
    if retval == True: 
        cv2.imshow("Video", image)
        cv2.imshow("Video_Gray", image_Gray) 
    key = cv2.waitKey(1)
    if key == 32: 
        break
capture.release() 
cv2.destroyAllWindows()

保存视频图像:

python 复制代码
import cv2
cap = cv2.VideoCapture(0, cv2.CAP_DSHOW)
while (cap.isOpened()):
    ret, frame = cap.read()
    cv2.imshow("Video", frame) 
    k = cv2.waitKey(1)
    if k == 32:
        cap.release() 
        cv2.destroyWindow("Video")
        cv2.imwrite("路径", frame) # 保存按下空格键时摄像头视频中的图像
        cv2.waitKey() # 刷新图像
        break
cv2.destroyAllWindows() # 销毁显示图像的窗口

播放视频文件:

python 复制代码
import cv2
video = cv2.VideoCapture("视频路径")
while (video.isOpened()):
    retval, image = video.read()
    # 设置"Video"窗口的宽为800,高为600
    cv2.namedWindow("Video", 0)
    cv2.resizeWindow("Video", 800, 600)
    if retval == True:
        # 在窗口中显示读取到的视频文件
        cv2.imshow("Video", image)
    else:
        break
    key = cv2.waitKey(1)
    # 按下ESC退出
    if key == 27: 
        break
video.release()
cv2.destroyAllWindows()

视频文件转换为灰度的:

python 复制代码
import cv2
video = cv2.VideoCapture("视频路径")
while (video.isOpened()): 
    retval, img_Color = video.read()
    cv2.namedWindow("Gray", 0)
    cv2.resizeWindow("Gray", 800, 600)
    if retval == True: 
        img_Gray = cv2.cvtColor(img_Color, cv2.COLOR_BGR2GRAY)
        cv2.imshow("Gray", img_Gray)
    else: 
        break
    key = cv2.waitKey(1) 
    if key == 27: 
        break
video.release()
cv2.destroyAllWindows()
相关推荐
_.Switch10 分钟前
Python 自动化运维持续优化与性能调优
运维·开发语言·python·缓存·自动化·运维开发
J不A秃V头A16 分钟前
Python爬虫:获取国家货币编码、货币名称
开发语言·爬虫·python
阿斯卡码2 小时前
jupyter添加、删除、查看内核
ide·python·jupyter
小于小于大橙子3 小时前
视觉SLAM数学基础
人工智能·数码相机·自动化·自动驾驶·几何学
埃菲尔铁塔_CV算法4 小时前
图像算法之 OCR 识别算法:原理与应用场景
图像处理·python·计算机视觉
封步宇AIGC4 小时前
量化交易系统开发-实时行情自动化交易-3.4.2.Okex行情交易数据
人工智能·python·机器学习·数据挖掘
封步宇AIGC5 小时前
量化交易系统开发-实时行情自动化交易-2.技术栈
人工智能·python·机器学习·数据挖掘
陌上阳光5 小时前
动手学深度学习68 Transformer
人工智能·深度学习·transformer
OpenI启智社区5 小时前
共筑开源技术新篇章 | 2024 CCF中国开源大会盛大开幕
人工智能·开源·ccf中国开源大会·大湾区
AI服务老曹5 小时前
建立更及时、更有效的安全生产优化提升策略的智慧油站开源了
大数据·人工智能·物联网·开源·音视频