Python学习笔记--内置模块functools中的lru_cache()函数

在编写一些应用中,我们的一些函数常常需要做一些耗时较长的操作,比如调用第三方API,进行复杂的运算等。尤其是处理数据的一些应用,需要重复计算,或者从外部获取数据,可以使用内置模块functools中的lru_cache()函数把计算的数据缓存下来,在后面重复计算使用数据时,就不再计算而是从缓存中获取前面计算过的数据,从而提升效率。

lru_cache()是一个装饰器,它可以用于将一个函数的结果缓存起来,以便在将来的调用中重复使用这些结果,从而提高性能。它使用最近最少使用(LRU)策略来管理缓存的大小。

使用场景:

  1. 重复计算:当某个函数的结果需要重复计算时,可以使用lru_cache()来缓存结果。这样,在后续的调用中,可以直接从缓存中获取结果,而不需要重新计算。
  2. 缓存数据:当某个函数需要从外部资源(如数据库、网络等)获取数据时,可以使用lru_cache()来缓存这些数据。这样,在后续的调用中,可以直接从缓存中获取数据,而不需要重新从外部资源获取。
  3. 优化性能:对于一些计算密集型或IO密集型的函数,使用lru_cache()可以显著提高性能。因为重复计算和外部资源访问通常是耗时的操作,使用缓存可以避免不必要的计算和访问。
python 复制代码
from functools import lru_cache  
  
@lru_cache(maxsize=None)  
def factorial(n):  
    if n < 0:  
        return None  
    elif n == 0:  
        return 1  
    else:  
        return n * factorial(n-1)

在上面这个示例中,定义了一个阶乘函数factorial(),并使用lru_cache()装饰器将其缓存起来。通过设置maxsize=None,设置为缓存无限大。然后,可以多次调用factorial()函数,比如:

>>>factorial(2)

>>>factorial(8)

>>>factorial(22)

因为使用lru_cache(maxsize=None)装饰器对factorial函数进行修饰,每次对该函数进行调用时,其结果都会被缓存起来。举例来说,执行factorial(10), factorial(20), factorial(30)等调用,其结果都会被分别缓存。之后,如果再次调用factorial(10), factorial(20), factorial(30),系统会直接从缓存中获取结果,而不会重新进行计算。这样可以显著提高函数的性能,特别是对于那些需要重复计算或从外部资源获取数据的函数。

另外,lru_cache()装饰器不会导致系统崩溃,即使缓存不足也不会受到影响。当缓存已满时,最近最少使用的缓存项将被自动删除,以便为新的缓存项腾出空间。在这种情况下,下次调用该函数时将重新计算其结果,并将其添加到缓存中。因此,使用lru_cache()装饰器可以有效地管理和优化缓存,而不会导致系统崩溃。

相关推荐
Y学院2 小时前
Python 数据分析:从新手到高手的“摸鱼”指南
python·数据分析
深耕AI2 小时前
【PyTorch训练】准确率计算(代码片段拆解)
人工智能·pytorch·python
eqwaak02 小时前
科技信息差(9.12)
开发语言·python·科技·量子计算
茯苓gao2 小时前
STM32G4 电流环闭环
笔记·stm32·单片机·嵌入式硬件·学习
easy20202 小时前
机器学习的本质:从跑模型到真正解决问题
笔记·学习·机器学习
Blossom.1183 小时前
从“能写”到“能干活”:大模型工具调用(Function-Calling)的工程化落地指南
数据库·人工智能·python·深度学习·机器学习·计算机视觉·oracle
蒋星熠3 小时前
破壁者指南:内网穿透技术的深度解构与实战方法
网络·数据库·redis·python·websocket·网络协议·udp
shizidushu3 小时前
使用 Pyinstaller 打包 PPOCRLabel
python·pyinstaller
汇能感知3 小时前
摄像头模组在智能家居设备中的应用
经验分享·笔记·科技