【Pytorch 第一讲】 如何加载预训练模型

一. 封装Pytorch的Model 加载pre-trianed Model

python 复制代码
import torch
import torchvision.models as models
from torchvision import transforms

# 1. 下载并加载预训练模型
model = models.resnet18(pretrained=False)  # 设置pretrained=False,表示不加载预训练权重

# 2. 下载预训练权重文件并加载
pretrained_dict = torch.load("path/to/resnet18-5c106cde.pth")  # 替换为实际的权重文件路径
model.load_state_dict(pretrained_dict)

# 3. 将模型设置为评估模式
model.eval()

# 4. 示例:将模型应用于输入数据
transform = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])

input_data = transform(Image.open("path/to/your/image.jpg")).unsqueeze(0)  # 替换为实际的图像路径
output = model(input_data)
print(output)

二. 自定义Pytorch模型加载 Pre-trained Model

python 复制代码
# 导入 PyTorch
import torch

# 初始化你的模型
model = faster_vit_0_224()
python 复制代码
# 加载预训练权重
checkpoint = torch.load('/home/loads/vit_0_224_1k.pth.tar')

# 或者

checkpoint = torch.load('/home/loads/vit_0_224_1k.pth')

当完成这个加载以后, 可以考虑打开 checkpoint , 看看该模型保存时,包含哪些dict keys.

python 复制代码
print(checkpoint.keys())

结果: dict_keys(['epoch', 'arch', 'state_dict', 

'optimizer', 'version', 'args', 'amp_scaler', 'metric'])

根据上面的 state_dict, 可以接下来用来将权重赋予模型Model

python 复制代码
# 将权重赋值给模型

model.load_state_dict(checkpoint['state_dict'])

注意:如果 在checkpoint 的dict_keys 中不是"state_dict", 是"model_state_dict", 则需要把checkpoint["state_dict"] 改成 checkpoinbt["model_state_dict"] 读取所下载的的模型的权重,并将其赋予给模型。

相关推荐
爱吃烤鸡翅的酸菜鱼几秒前
CANN ops-math向量运算与特殊函数实现解析
人工智能·aigc
波动几何11 分钟前
OpenClaw 构建指南:打造智能多工具编排运行时框架
人工智能
程序猿追12 分钟前
深度解码AI之魂:CANN Compiler 核心架构与技术演进
人工智能·架构
wazmlp00188736912 分钟前
python第三次作业
开发语言·python
新缸中之脑13 分钟前
Figma Make 提示工程
人工智能·figma
赫尔·普莱蒂科萨·帕塔14 分钟前
智能体工程
人工智能·机器人·软件工程·agi
觉醒大王17 分钟前
AI写的青基中了
人工智能·笔记·深度学习·学习·职场和发展·学习方法
深鱼~18 分钟前
深度剖析ops-transformer:LayerNorm与GEMM的融合优化
人工智能·深度学习·transformer
哈__21 分钟前
CANN图优化技术:深度学习模型的编译器魔法
人工智能·深度学习
灰灰勇闯IT22 分钟前
神经网络的基石——深度解析 CANN ops-nn 算子库如何赋能昇腾 AI
人工智能·深度学习·神经网络