【Pytorch 第一讲】 如何加载预训练模型

一. 封装Pytorch的Model 加载pre-trianed Model

python 复制代码
import torch
import torchvision.models as models
from torchvision import transforms

# 1. 下载并加载预训练模型
model = models.resnet18(pretrained=False)  # 设置pretrained=False,表示不加载预训练权重

# 2. 下载预训练权重文件并加载
pretrained_dict = torch.load("path/to/resnet18-5c106cde.pth")  # 替换为实际的权重文件路径
model.load_state_dict(pretrained_dict)

# 3. 将模型设置为评估模式
model.eval()

# 4. 示例:将模型应用于输入数据
transform = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])

input_data = transform(Image.open("path/to/your/image.jpg")).unsqueeze(0)  # 替换为实际的图像路径
output = model(input_data)
print(output)

二. 自定义Pytorch模型加载 Pre-trained Model

python 复制代码
# 导入 PyTorch
import torch

# 初始化你的模型
model = faster_vit_0_224()
python 复制代码
# 加载预训练权重
checkpoint = torch.load('/home/loads/vit_0_224_1k.pth.tar')

# 或者

checkpoint = torch.load('/home/loads/vit_0_224_1k.pth')

当完成这个加载以后, 可以考虑打开 checkpoint , 看看该模型保存时,包含哪些dict keys.

python 复制代码
print(checkpoint.keys())

结果: dict_keys(['epoch', 'arch', 'state_dict', 

'optimizer', 'version', 'args', 'amp_scaler', 'metric'])

根据上面的 state_dict, 可以接下来用来将权重赋予模型Model

python 复制代码
# 将权重赋值给模型

model.load_state_dict(checkpoint['state_dict'])

注意:如果 在checkpoint 的dict_keys 中不是"state_dict", 是"model_state_dict", 则需要把checkpoint["state_dict"] 改成 checkpoinbt["model_state_dict"] 读取所下载的的模型的权重,并将其赋予给模型。

相关推荐
AI蜗牛之家3 小时前
Qwen系列之Qwen3解读:最强开源模型的细节拆解
人工智能·python
王上上3 小时前
【论文阅读30】Bi-LSTM(2024)
论文阅读·人工智能·lstm
whyeekkk4 小时前
python打卡第48天
开发语言·python
YunTM4 小时前
贝叶斯优化+LSTM+时序预测=Nature子刊!
人工智能·机器学习
舒一笑5 小时前
智能体革命:企业如何构建自主决策的AI代理?
人工智能
SpikeKing5 小时前
Server - 使用 Docker 配置 PyTorch 研发环境
pytorch·docker·llm
丁先生qaq6 小时前
热成像实例分割电力设备数据集(3类,838张)
人工智能·计算机视觉·目标跟踪·数据集
Eiceblue6 小时前
Python读取PDF:文本、图片与文档属性
数据库·python·pdf
红衣小蛇妖6 小时前
神经网络-Day45
人工智能·深度学习·神经网络
weixin_527550406 小时前
初级程序员入门指南
javascript·python·算法