【Pytorch 第一讲】 如何加载预训练模型

一. 封装Pytorch的Model 加载pre-trianed Model

python 复制代码
import torch
import torchvision.models as models
from torchvision import transforms

# 1. 下载并加载预训练模型
model = models.resnet18(pretrained=False)  # 设置pretrained=False,表示不加载预训练权重

# 2. 下载预训练权重文件并加载
pretrained_dict = torch.load("path/to/resnet18-5c106cde.pth")  # 替换为实际的权重文件路径
model.load_state_dict(pretrained_dict)

# 3. 将模型设置为评估模式
model.eval()

# 4. 示例:将模型应用于输入数据
transform = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])

input_data = transform(Image.open("path/to/your/image.jpg")).unsqueeze(0)  # 替换为实际的图像路径
output = model(input_data)
print(output)

二. 自定义Pytorch模型加载 Pre-trained Model

python 复制代码
# 导入 PyTorch
import torch

# 初始化你的模型
model = faster_vit_0_224()
python 复制代码
# 加载预训练权重
checkpoint = torch.load('/home/loads/vit_0_224_1k.pth.tar')

# 或者

checkpoint = torch.load('/home/loads/vit_0_224_1k.pth')

当完成这个加载以后, 可以考虑打开 checkpoint , 看看该模型保存时,包含哪些dict keys.

python 复制代码
print(checkpoint.keys())

结果: dict_keys(['epoch', 'arch', 'state_dict', 

'optimizer', 'version', 'args', 'amp_scaler', 'metric'])

根据上面的 state_dict, 可以接下来用来将权重赋予模型Model

python 复制代码
# 将权重赋值给模型

model.load_state_dict(checkpoint['state_dict'])

注意:如果 在checkpoint 的dict_keys 中不是"state_dict", 是"model_state_dict", 则需要把checkpoint["state_dict"] 改成 checkpoinbt["model_state_dict"] 读取所下载的的模型的权重,并将其赋予给模型。

相关推荐
通街市密人有8 小时前
IDF: Iterative Dynamic Filtering Networks for Generalizable Image Denoising
人工智能·深度学习·计算机视觉
大千AI助手8 小时前
TruthfulQA:衡量语言模型真实性的基准
人工智能·语言模型·自然语言处理·llm·模型评估·truthfulqa·事实性基准
蚂蚁RichLab前端团队8 小时前
🚀🚀🚀 RichLab - 花呗前端团队招贤纳士 - 【转岗/内推/社招】
前端·javascript·人工智能
智数研析社8 小时前
9120 部 TMDb 高分电影数据集 | 7 列全维度指标 (评分 / 热度 / 剧情)+API 权威源 | 电影趋势分析 / 推荐系统 / NLP 建模用
大数据·人工智能·python·深度学习·数据分析·数据集·数据清洗
扯淡的闲人8 小时前
多语言编码Agent解决方案(5)-IntelliJ插件实现
开发语言·python
救救孩子把8 小时前
2-机器学习与大模型开发数学教程-第0章 预备知识-0-2 数列与级数(收敛性、幂级数)
人工智能·数学·机器学习
moxiaoran57538 小时前
Flask学习笔记(一)
后端·python·flask
yzx9910138 小时前
接口协议全解析:从HTTP到gRPC,如何选择适合你的通信方案?
网络·人工智能·网络协议·flask·pygame
秋氘渔9 小时前
迭代器和生成器的区别与联系
python·迭代器·生成器·可迭代对象
Gu_shiwww9 小时前
数据结构8——双向链表
c语言·数据结构·python·链表·小白初步