机器学习--基础概念(二)

1.分类算法

分类算法是有监督学习的一个核心问题,他从数据中学习一个分类决策函数或分类模型,对新的输入进行预测,输出变量取有限个离散值。

以下是一些常见的分类算法:

  1. 逻辑回归 (Logistic Regression):

    用于二分类问题,通过逻辑函数将输入映射到0和1之间的概率。

  2. K近邻算法 (K-Nearest Neighbors, KNN):

    基于输入数据点在特征空间中的邻近程度,将其分为最接近的K个邻居的多数类别。

  3. 决策树 (Decision Trees):

    基于对输入数据进行递归分割,以最小化混淆或不确定性,从而创建树状结构来进行分类。

  4. 随机森林 (Random Forest):

    通过集成多个决策树,每个树的投票决定最终的分类结果,提高模型的鲁棒性和泛化能力。

  5. 支持向量机 (Support Vector Machines, SVM):

    构建一个超平面,最大化两个类别之间的间隔,用于二分类和多分类问题。

  6. 朴素贝叶斯 (Naive Bayes):

    基于贝叶斯定理,假设输入特征之间是相互独立的,通过计算后验概率进行分类。

  7. 神经网络 (Neural Networks):

    通过多个神经元和层的组合,学习非线性关系,适用于复杂的问题和大规模数据。

  8. 梯度提升机 (Gradient Boosting Machines):

    通过逐步构建多个弱分类器(通常是决策树),每个都纠正前一个的错误,从而提高整体模型性能。

  9. Adaboost (Adaptive Boosting):

    类似于梯度提升,但是每个弱分类器的权重是根据前一个分类器的性能来调整的。

  10. XGBoost (Extreme Gradient Boosting):

    是一种梯度提升算法的变种,通过更加高效的实现和正则化技术,提高了性能。

选择合适的分类算法通常取决于数据的性质、问题的复杂程度以及模型的性能要求。在实际应用中,往往需要尝试多种算法,并通过交叉验证等技术来评估它们的性能。

相关推荐
jackylzh1 小时前
深度学习中, WIN32为 Windows API 标识,匹配 Windows 系统,含 32/64 位
人工智能·python·深度学习
新加坡内哥谈技术3 小时前
Claude Code 的魔力
人工智能
北邮刘老师4 小时前
关于智能体互联协议标准的130天
人工智能·大模型·智能体·智能体互联网
一条星星鱼5 小时前
深度学习是如何收敛的?梯度下降算法原理详解
人工智能·深度学习·算法
Elastic 中国社区官方博客6 小时前
AutoOps:简单的 Elasticsearch 集群监控与管理现已支持本地部署
大数据·人工智能·elasticsearch·搜索引擎·云计算·全文检索
金井PRATHAMA7 小时前
语义网络对人工智能自然语言处理中深层语义分析的影响与启示
人工智能·自然语言处理·知识图谱
程序猿阿伟8 小时前
《重构工业运维链路:三大AI工具让设备故障“秒定位、少误判”》
运维·人工智能·重构
yueyuebaobaoxinx8 小时前
聚焦技术落地,展现 AI 重构产业的实践路径。
人工智能·重构
算家云8 小时前
Sora 2 的社交野心:AI 如何重构内容社交产品逻辑?
人工智能·openai·算家云·租算力,到算家云·sora 2·ai社交
飞哥数智坊9 小时前
Qwen3 Omni 的“全模态”,到底和多模态有啥不一样?
人工智能