机器学习--基础概念(二)

1.分类算法

分类算法是有监督学习的一个核心问题,他从数据中学习一个分类决策函数或分类模型,对新的输入进行预测,输出变量取有限个离散值。

以下是一些常见的分类算法:

  1. 逻辑回归 (Logistic Regression):

    用于二分类问题,通过逻辑函数将输入映射到0和1之间的概率。

  2. K近邻算法 (K-Nearest Neighbors, KNN):

    基于输入数据点在特征空间中的邻近程度,将其分为最接近的K个邻居的多数类别。

  3. 决策树 (Decision Trees):

    基于对输入数据进行递归分割,以最小化混淆或不确定性,从而创建树状结构来进行分类。

  4. 随机森林 (Random Forest):

    通过集成多个决策树,每个树的投票决定最终的分类结果,提高模型的鲁棒性和泛化能力。

  5. 支持向量机 (Support Vector Machines, SVM):

    构建一个超平面,最大化两个类别之间的间隔,用于二分类和多分类问题。

  6. 朴素贝叶斯 (Naive Bayes):

    基于贝叶斯定理,假设输入特征之间是相互独立的,通过计算后验概率进行分类。

  7. 神经网络 (Neural Networks):

    通过多个神经元和层的组合,学习非线性关系,适用于复杂的问题和大规模数据。

  8. 梯度提升机 (Gradient Boosting Machines):

    通过逐步构建多个弱分类器(通常是决策树),每个都纠正前一个的错误,从而提高整体模型性能。

  9. Adaboost (Adaptive Boosting):

    类似于梯度提升,但是每个弱分类器的权重是根据前一个分类器的性能来调整的。

  10. XGBoost (Extreme Gradient Boosting):

    是一种梯度提升算法的变种,通过更加高效的实现和正则化技术,提高了性能。

选择合适的分类算法通常取决于数据的性质、问题的复杂程度以及模型的性能要求。在实际应用中,往往需要尝试多种算法,并通过交叉验证等技术来评估它们的性能。

相关推荐
Mr.Winter`几秒前
深度强化学习 | 图文详细推导软性演员-评论家SAC算法原理
人工智能·深度学习·神经网络·机器学习·数据挖掘·机器人·强化学习
强盛小灵通专卖员2 分钟前
分类分割详细指标说明
人工智能·深度学习·算法·机器学习
特立独行的猫a2 小时前
HarmonyOS 【诗韵悠然】AI古诗词赏析APP开发实战从零到一系列(一、开篇,项目介绍)
人工智能·华为·harmonyos·古诗词
yu4106213 小时前
2025年中期大语言模型实力深度剖析
人工智能·语言模型·自然语言处理
feng995205 小时前
技术伦理双轨认证如何重构AI工程师能力评估体系——基于AAIA框架的技术解析与行业实证研究
人工智能·aaif·aaia·iaaai
2301_776681656 小时前
【用「概率思维」重新理解生活】
开发语言·人工智能·自然语言处理
蜡笔小新..6 小时前
从零开始:用PyTorch构建CIFAR-10图像分类模型达到接近1的准确率
人工智能·pytorch·机器学习·分类·cifar-10
富唯智能6 小时前
转运机器人可以绕障吗?
人工智能·智能机器人·转运机器人
视觉语言导航7 小时前
湖南大学3D场景问答最新综述!3D-SQA:3D场景问答助力具身智能场景理解
人工智能·深度学习·具身智能
AidLux7 小时前
端侧智能重构智能监控新路径 | 2025 高通边缘智能创新应用大赛第三场公开课来袭!
大数据·人工智能