机器学习--基础概念(二)

1.分类算法

分类算法是有监督学习的一个核心问题,他从数据中学习一个分类决策函数或分类模型,对新的输入进行预测,输出变量取有限个离散值。

以下是一些常见的分类算法:

  1. 逻辑回归 (Logistic Regression):

    用于二分类问题,通过逻辑函数将输入映射到0和1之间的概率。

  2. K近邻算法 (K-Nearest Neighbors, KNN):

    基于输入数据点在特征空间中的邻近程度,将其分为最接近的K个邻居的多数类别。

  3. 决策树 (Decision Trees):

    基于对输入数据进行递归分割,以最小化混淆或不确定性,从而创建树状结构来进行分类。

  4. 随机森林 (Random Forest):

    通过集成多个决策树,每个树的投票决定最终的分类结果,提高模型的鲁棒性和泛化能力。

  5. 支持向量机 (Support Vector Machines, SVM):

    构建一个超平面,最大化两个类别之间的间隔,用于二分类和多分类问题。

  6. 朴素贝叶斯 (Naive Bayes):

    基于贝叶斯定理,假设输入特征之间是相互独立的,通过计算后验概率进行分类。

  7. 神经网络 (Neural Networks):

    通过多个神经元和层的组合,学习非线性关系,适用于复杂的问题和大规模数据。

  8. 梯度提升机 (Gradient Boosting Machines):

    通过逐步构建多个弱分类器(通常是决策树),每个都纠正前一个的错误,从而提高整体模型性能。

  9. Adaboost (Adaptive Boosting):

    类似于梯度提升,但是每个弱分类器的权重是根据前一个分类器的性能来调整的。

  10. XGBoost (Extreme Gradient Boosting):

    是一种梯度提升算法的变种,通过更加高效的实现和正则化技术,提高了性能。

选择合适的分类算法通常取决于数据的性质、问题的复杂程度以及模型的性能要求。在实际应用中,往往需要尝试多种算法,并通过交叉验证等技术来评估它们的性能。

相关推荐
Ai多利2 分钟前
深度学习登上Nature子刊!特征选择创新思路
人工智能·算法·计算机视觉·多模态·特征选择
几道之旅3 分钟前
MCP(Model Context Protocol)与提示词撰写
人工智能
Spider_Man11 分钟前
“AI查用户”也能这么简单?手把手带你用Node.js+前端玩转DeepSeek!
javascript·人工智能·node.js
T.D.C25 分钟前
【OpenCV】使用opencv找哈士奇的脸
人工智能·opencv·计算机视觉
大霸王龙43 分钟前
软件工程的软件生命周期通常分为以下主要阶段
大数据·人工智能·旅游
yvestine1 小时前
自然语言处理——文本表示
人工智能·python·算法·自然语言处理·文本表示
zzc9211 小时前
MATLAB仿真生成无线通信网络拓扑推理数据集
开发语言·网络·数据库·人工智能·python·深度学习·matlab
点赋科技1 小时前
沙市区举办资本市场赋能培训会 点赋科技分享智能消费新实践
大数据·人工智能
HeteroCat1 小时前
一周年工作总结:做了一年的AI工作我都干了什么?
人工智能