CF1029E Tree with Small Distances 题解

题意简述

给定一颗有根树(根节点为 1 1 1)。要求往树中加入一些边使得从根节点到其他节点的距离至多是 2 2 2。求加入边的最小数量。(边全部都是无向的)

解题思路

还是采用贪心的思路。

对于一个到根节点的距离大于 2 2 2 的叶子节点,我们只有两种方法使它到根节点的距离小于等于 2 2 2,要么直接连它和根节点,要么连接它的父亲和根节点。比较显然的是,如果连接它的父亲和根节点,一定不劣于连接它和根节点。

然后接下来这一步和其他题解说的都不太一样。大部分题解在得出贪心的策略后是把所有点按深度排序,然后开始贪心。但是根据我们上面推出的东西,我们只需要保证每次处理的是叶子节点就可以,这启示我们使用拓扑排序。

具体地,先 dfs 一遍求出每个点的父亲,然后进行拓扑排序,将拓扑排序的结果记录下来,进行贪心即可。

由于不需要排序,所以时间复杂度其实是优于其他题解所述的贪心。

代码示例

cpp 复制代码
#include<bits/stdc++.h>
using namespace std;
#define int long long
int n,vis[200010],ans=0,du[200010],fa[200010],num[200010],cnt=0;
vector<int> G[200010];
void dfs(int u,int Fa){
	fa[u]=Fa;
	for(int v:G[u]) if(v!=Fa) dfs(v,u);
}
signed main(){
	cin>>n;
	for(int i=1;i<=n-1;i++){
		int u,v;
		cin>>u>>v;
		G[u].push_back(v);
		G[v].push_back(u);
		du[u]++,du[v]++;
	}
	dfs(1,0);//找父亲
	vis[1]=1;
	for(int u:G[1]){
		vis[u]=1;
		for(int v:G[u]) vis[v]=1;
	}
    //把根节点周围先标记了
	queue<int> q;
	for(int i=1;i<=n;i++) if(!vis[i]&&du[i]==1) q.push(i);
	while(!q.empty()){
		int u=q.front();q.pop();
		num[++cnt]=u;
		for(int v:G[u]){
			du[v]--;
			if(du[v]==1) q.push(v);
		}
	}
    //拓扑
	for(int i=1;i<=cnt;i++){
		int u=num[i];
		if(vis[u]) continue;
		vis[fa[u]]=1;
		ans++;
		for(int v:G[fa[u]]) vis[v]=1;
	}
    //贪心
	cout<<ans<<endl;
	return 0;
}
相关推荐
NAGNIP2 小时前
大模型框架性能优化策略:延迟、吞吐量与成本权衡
算法
美团技术团队3 小时前
LongCat-Flash:如何使用 SGLang 部署美团 Agentic 模型
人工智能·算法
Fanxt_Ja8 小时前
【LeetCode】算法详解#15 ---环形链表II
数据结构·算法·leetcode·链表
侃侃_天下8 小时前
最终的信号类
开发语言·c++·算法
茉莉玫瑰花茶8 小时前
算法 --- 字符串
算法
博笙困了8 小时前
AcWing学习——差分
c++·算法
NAGNIP8 小时前
认识 Unsloth 框架:大模型高效微调的利器
算法
NAGNIP8 小时前
大模型微调框架之LLaMA Factory
算法
echoarts8 小时前
Rayon Rust中的数据并行库入门教程
开发语言·其他·算法·rust
Python技术极客8 小时前
一款超好用的 Python 交互式可视化工具,强烈推荐~
算法