CF1029E Tree with Small Distances 题解

题意简述

给定一颗有根树(根节点为 1 1 1)。要求往树中加入一些边使得从根节点到其他节点的距离至多是 2 2 2。求加入边的最小数量。(边全部都是无向的)

解题思路

还是采用贪心的思路。

对于一个到根节点的距离大于 2 2 2 的叶子节点,我们只有两种方法使它到根节点的距离小于等于 2 2 2,要么直接连它和根节点,要么连接它的父亲和根节点。比较显然的是,如果连接它的父亲和根节点,一定不劣于连接它和根节点。

然后接下来这一步和其他题解说的都不太一样。大部分题解在得出贪心的策略后是把所有点按深度排序,然后开始贪心。但是根据我们上面推出的东西,我们只需要保证每次处理的是叶子节点就可以,这启示我们使用拓扑排序。

具体地,先 dfs 一遍求出每个点的父亲,然后进行拓扑排序,将拓扑排序的结果记录下来,进行贪心即可。

由于不需要排序,所以时间复杂度其实是优于其他题解所述的贪心。

代码示例

cpp 复制代码
#include<bits/stdc++.h>
using namespace std;
#define int long long
int n,vis[200010],ans=0,du[200010],fa[200010],num[200010],cnt=0;
vector<int> G[200010];
void dfs(int u,int Fa){
	fa[u]=Fa;
	for(int v:G[u]) if(v!=Fa) dfs(v,u);
}
signed main(){
	cin>>n;
	for(int i=1;i<=n-1;i++){
		int u,v;
		cin>>u>>v;
		G[u].push_back(v);
		G[v].push_back(u);
		du[u]++,du[v]++;
	}
	dfs(1,0);//找父亲
	vis[1]=1;
	for(int u:G[1]){
		vis[u]=1;
		for(int v:G[u]) vis[v]=1;
	}
    //把根节点周围先标记了
	queue<int> q;
	for(int i=1;i<=n;i++) if(!vis[i]&&du[i]==1) q.push(i);
	while(!q.empty()){
		int u=q.front();q.pop();
		num[++cnt]=u;
		for(int v:G[u]){
			du[v]--;
			if(du[v]==1) q.push(v);
		}
	}
    //拓扑
	for(int i=1;i<=cnt;i++){
		int u=num[i];
		if(vis[u]) continue;
		vis[fa[u]]=1;
		ans++;
		for(int v:G[fa[u]]) vis[v]=1;
	}
    //贪心
	cout<<ans<<endl;
	return 0;
}
相关推荐
ZackSock6 小时前
Policy Gradient 极简教程
算法
Big_Yellow_J6 小时前
深入浅出了解生成模型-3:Diffusion模型原理以及代码
算法·面试
ZackSock7 小时前
从零实现 RAG
算法
Jolyne_8 小时前
前端常用的树处理方法总结
前端·算法·面试
前端付豪10 小时前
微信视频号推荐系统揭秘:兴趣建模、多模态分析与亿级流控架构实战
前端·后端·算法
木杉苑10 小时前
快速幂算法
算法
-qOVOp-12 小时前
408第一季 - 数据结构 - 排序II
数据结构·算法·排序算法
小胖同学~12 小时前
快速入门数据结构--栈
算法
C++ 老炮儿的技术栈12 小时前
VSCode -配置为中文界面
大数据·c语言·c++·ide·vscode·算法·编辑器
刃神太酷啦13 小时前
聚焦 string:C++ 文本处理的核心利器--《Hello C++ Wrold!》(10)--(C/C++)
java·c语言·c++·qt·算法·leetcode·github