C#简单使用Yolov5的Onnx格式模型进行目标检测

背景

最近要离职了,同事需要了解一下C#如何使用yolov5系列onnx格式模型进行目标检测,由于其对C#不熟练,可能会影响公司后续的开发进度,所以趁着还在,赶紧把手尾搞好。

方案

1、创建一个C# DotNet 8 控制台项目[可千万注意不要选了DotNetFramework框架哦],命名为TestNugetCpuOnnx,并生成解决方案,产生bin目录

2、 在Nuget中安装我的包BingLing.Yolov5Onnx.Cpu

由于这个是可以跨平台调用的,我并没有把运行时一起打包过去,我当前示例的系统是windows,因此我还需要安装EmguCv.runtime.windows

3、准备好我们的onnx文件和一个json格式的配置文件 ,如果你没有的话,可以到我的码云里下载

BingLing.Yolov5Onnx.Cpu: C#使用cpu使用 yolov5 模型的onnx格式文件进行推理,简化你的编码 (gitee.com)

下载完毕后将其中的yolov5s.onnx,以及yolov5_onnx.json这两个文件一起放到bin/Debug/net8.0这个目录下。值得一提的是,你还需要准备一张图片,修改名字为down.jpeg也放到这个目录下,如果找不到,直接从我的博客下也行。

down.jpeg【网络获取,觉侵联删】

4、 修改Program.cs代码内容为如下

cs 复制代码
using BingLing.Yolov5Onnx.Cpu;
using Emgu.CV.Structure;
using Emgu.CV;
using System.Collections.Concurrent;

namespace TestNugetCpuOnnx
{
    internal class Program
    {
        static void Main(string[] args)
        {
            Yolov5Onnx yolov5Onnx = new("yolov5_onnx.json");
            Mat mat = new("down.jpeg");
            MCvScalar color = new(255, 0, 0);
            ConcurrentDictionary<int, List<Prediction>> dictionary = yolov5Onnx.DetectAllOut(mat);

            foreach (List<Prediction> predictions in dictionary.Values)
            {
                foreach (var prediction in predictions)
                {
                    int x = (int)((prediction.X - prediction.Width / 2));
                    int y = (int)((prediction.Y - prediction.Height / 2));
                    int width = (int)(prediction.Width);
                    int height = (int)(prediction.Height);
                    CvInvoke.Rectangle(mat, new System.Drawing.Rectangle(x, y, width, height), color);
                    CvInvoke.PutText(mat, $"k:{prediction.Kind}", new System.Drawing.Point(x, y + 20), Emgu.CV.CvEnum.FontFace.HersheyDuplex, 1, color);
                    CvInvoke.PutText(mat, $"c:{prediction.Confidence:0.00}", new System.Drawing.Point(x, y + 50), Emgu.CV.CvEnum.FontFace.HersheyDuplex, 1, color);
                }
            }
            CvInvoke.Imshow("mat", mat);
            CvInvoke.WaitKey(0);
            CvInvoke.DestroyAllWindows();
        }
    }
}

5、运行程序,查看结果,其中k为kind,c为confidence

6、安装EmguCv.runtime.ubuntu在linux系统下运行结果

注意发布成linux可执行程序,发布方法前面博客已经论述过,这里不再重复

相关推荐
迅易科技18 分钟前
借助腾讯云质检平台的新范式,做工业制造企业质检的“AI慧眼”
人工智能·视觉检测·制造
古希腊掌管学习的神1 小时前
[机器学习]XGBoost(3)——确定树的结构
人工智能·机器学习
ZHOU_WUYI2 小时前
4.metagpt中的软件公司智能体 (ProjectManager 角色)
人工智能·metagpt
靴子学长2 小时前
基于字节大模型的论文翻译(含免费源码)
人工智能·深度学习·nlp
AI_NEW_COME3 小时前
知识库管理系统可扩展性深度测评
人工智能
海棠AI实验室4 小时前
AI的进阶之路:从机器学习到深度学习的演变(一)
人工智能·深度学习·机器学习
hunteritself4 小时前
AI Weekly『12月16-22日』:OpenAI公布o3,谷歌发布首个推理模型,GitHub Copilot免费版上线!
人工智能·gpt·chatgpt·github·openai·copilot
IT古董4 小时前
【机器学习】机器学习的基本分类-强化学习-策略梯度(Policy Gradient,PG)
人工智能·机器学习·分类
centurysee4 小时前
【最佳实践】Anthropic:Agentic系统实践案例
人工智能
mahuifa4 小时前
混合开发环境---使用编程AI辅助开发Qt
人工智能·vscode·qt·qtcreator·编程ai