C#简单使用Yolov5的Onnx格式模型进行目标检测

背景

最近要离职了,同事需要了解一下C#如何使用yolov5系列onnx格式模型进行目标检测,由于其对C#不熟练,可能会影响公司后续的开发进度,所以趁着还在,赶紧把手尾搞好。

方案

1、创建一个C# DotNet 8 控制台项目[可千万注意不要选了DotNetFramework框架哦],命名为TestNugetCpuOnnx,并生成解决方案,产生bin目录

2、 在Nuget中安装我的包BingLing.Yolov5Onnx.Cpu

由于这个是可以跨平台调用的,我并没有把运行时一起打包过去,我当前示例的系统是windows,因此我还需要安装EmguCv.runtime.windows

3、准备好我们的onnx文件和一个json格式的配置文件 ,如果你没有的话,可以到我的码云里下载

BingLing.Yolov5Onnx.Cpu: C#使用cpu使用 yolov5 模型的onnx格式文件进行推理,简化你的编码 (gitee.com)

下载完毕后将其中的yolov5s.onnx,以及yolov5_onnx.json这两个文件一起放到bin/Debug/net8.0这个目录下。值得一提的是,你还需要准备一张图片,修改名字为down.jpeg也放到这个目录下,如果找不到,直接从我的博客下也行。

down.jpeg【网络获取,觉侵联删】

4、 修改Program.cs代码内容为如下

cs 复制代码
using BingLing.Yolov5Onnx.Cpu;
using Emgu.CV.Structure;
using Emgu.CV;
using System.Collections.Concurrent;

namespace TestNugetCpuOnnx
{
    internal class Program
    {
        static void Main(string[] args)
        {
            Yolov5Onnx yolov5Onnx = new("yolov5_onnx.json");
            Mat mat = new("down.jpeg");
            MCvScalar color = new(255, 0, 0);
            ConcurrentDictionary<int, List<Prediction>> dictionary = yolov5Onnx.DetectAllOut(mat);

            foreach (List<Prediction> predictions in dictionary.Values)
            {
                foreach (var prediction in predictions)
                {
                    int x = (int)((prediction.X - prediction.Width / 2));
                    int y = (int)((prediction.Y - prediction.Height / 2));
                    int width = (int)(prediction.Width);
                    int height = (int)(prediction.Height);
                    CvInvoke.Rectangle(mat, new System.Drawing.Rectangle(x, y, width, height), color);
                    CvInvoke.PutText(mat, $"k:{prediction.Kind}", new System.Drawing.Point(x, y + 20), Emgu.CV.CvEnum.FontFace.HersheyDuplex, 1, color);
                    CvInvoke.PutText(mat, $"c:{prediction.Confidence:0.00}", new System.Drawing.Point(x, y + 50), Emgu.CV.CvEnum.FontFace.HersheyDuplex, 1, color);
                }
            }
            CvInvoke.Imshow("mat", mat);
            CvInvoke.WaitKey(0);
            CvInvoke.DestroyAllWindows();
        }
    }
}

5、运行程序,查看结果,其中k为kind,c为confidence

6、安装EmguCv.runtime.ubuntu在linux系统下运行结果

注意发布成linux可执行程序,发布方法前面博客已经论述过,这里不再重复

相关推荐
阿坡RPA2 小时前
手搓MCP客户端&服务端:从零到实战极速了解MCP是什么?
人工智能·aigc
用户27784491049932 小时前
借助DeepSeek智能生成测试用例:从提示词到Excel表格的全流程实践
人工智能·python
机器之心3 小时前
刚刚,DeepSeek公布推理时Scaling新论文,R2要来了?
人工智能
算AI5 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
“抚琴”的人5 小时前
【机械视觉】C#+VisionPro联合编程———【六、visionPro连接工业相机设备】
c#·工业相机·visionpro·机械视觉
凯子坚持 c5 小时前
基于飞桨框架3.0本地DeepSeek-R1蒸馏版部署实战
人工智能·paddlepaddle
你觉得2056 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
8K超高清6 小时前
中国8K摄像机:科技赋能文化传承新图景
大数据·人工智能·科技·物联网·智能硬件
hyshhhh6 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
薛定谔的猫-菜鸟程序员6 小时前
零基础玩转深度神经网络大模型:从Hello World到AI炼金术-详解版(含:Conda 全面使用指南)
人工智能·神经网络·dnn