经典目标检测YOLO系列(三)YOLOV3的复现(1)总体网络架构及前向处理过程

经典目标检测YOLO系列(三)YOLOV3的复现(1)总体网络架构及前向处理过程

和之前实现的YOLOv2一样,根据《YOLO目标检测》(ISBN:9787115627094)一书,在不脱离YOLOv3的大部分核心理念的前提下,重构一款较新的YOLOv3检测器,来对YOLOv3有更加深刻的认识。

书中源码连接: RT-ODLab: YOLO Tutorial

1、YOLOv3网络架构

1.1 DarkNet53主干网络

  • 这里使用原版YOLOv3中提出的DarkNet53作为主干网络(backbone)。这里,作者还提供了DarkNetTiny版本的网络结构。
  • 可以在https://github.com/yjh0410/image_classification_pytorch中,手动下载作者提供的在ImageNet数据集的预训练权重。

1.1.1 DarkNet53的残差模块

  • DarkNet53主要就是由一系列残差模块组成的,组成为【1、2、8、8、4】。

  • 首先,我们搭建了由1×1卷积层和3×3卷积层组成的Bottleneck模块,其中shortcut参数用于决定是否使用残差连接。

python 复制代码
# RT-ODLab/models/detectors/yolov3/yolov3_basic.py
# BottleNeck
class Bottleneck(nn.Module):
    def __init__(self,
                 in_dim,
                 out_dim,
                 expand_ratio=0.5,
                 shortcut=False,
                 depthwise=False,
                 act_type='silu',
                 norm_type='BN'):
        super(Bottleneck, self).__init__()
        inter_dim = int(out_dim * expand_ratio)  # hidden channels            
        self.cv1 = Conv(in_dim, inter_dim, k=1, norm_type=norm_type, act_type=act_type)
        self.cv2 = Conv(inter_dim, out_dim, k=3, p=1, norm_type=norm_type, act_type=act_type, depthwise=depthwise)
        self.shortcut = shortcut and in_dim == out_dim

    def forward(self, x):
        h = self.cv2(self.cv1(x))

        return x + h if self.shortcut else h
  • 然后,我们构建ResBlock类,通过调整nblocks决定使用多少个Bottleneck模块。
python 复制代码
# RT-ODLab/models/detectors/yolov3/yolov3_basic.py
# ResBlock
class ResBlock(nn.Module):
    def __init__(self,
                 in_dim,
                 out_dim,
                 nblocks=1,
                 act_type='silu',
                 norm_type='BN'):
        super(ResBlock, self).__init__()
        assert in_dim == out_dim
        self.m = nn.Sequential(*[
            Bottleneck(in_dim, out_dim, expand_ratio=0.5, shortcut=True,
                       norm_type=norm_type, act_type=act_type)
                       for _ in range(nblocks)
                       ])

    def forward(self, x):
        return self.m(x)

1.1.2 构建DarkNet53网络

  • 使用经典的【1、2、8、8、4】结构堆叠残差模块,层与层之间的降采样操作由stride=2的卷积来实现。
  • 这里使用SiLU替代LeakyReLU激活函数,SiLU是Sigmoid和ReLU的改进版。SiLU具备无上界有下界、平滑、非单调的特性。
  • DarkNet53返回C3、C4和C5三个尺度的特征图,目的是做FPN以及多级检测。
  • 源码中,作者还提供了一个DarkNetTiny版本的网络结构。
  • 完成yolov3_backbone的搭建后,可以在yolov3.py文件中,通过build_backbone函数进行调用。
python 复制代码
# RT-ODLab/models/detectors/yolov3/yolov3_backbone.py
import torch
import torch.nn as nn

try:
    from .yolov3_basic import Conv, ResBlock
except:
    from yolov3_basic import Conv, ResBlock
    

model_urls = {
    "darknet_tiny": "https://github.com/yjh0410/image_classification_pytorch/releases/download/weight/darknet_tiny.pth",
    "darknet53": "https://github.com/yjh0410/image_classification_pytorch/releases/download/weight/darknet53_silu.pth"
}


# --------------------- DarkNet-53 -----------------------
## DarkNet-53
class DarkNet53(nn.Module):
    def __init__(self, act_type='silu', norm_type='BN'):
        super(DarkNet53, self).__init__()
        self.feat_dims = [256, 512, 1024]

        # P1
        self.layer_1 = nn.Sequential(
            Conv(3, 32, k=3, p=1, act_type=act_type, norm_type=norm_type),
            Conv(32, 64, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type),
            ResBlock(64, 64, nblocks=1, act_type=act_type, norm_type=norm_type)
        )
        # P2
        self.layer_2 = nn.Sequential(
            Conv(64, 128, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type),
            ResBlock(128, 128, nblocks=2, act_type=act_type, norm_type=norm_type)
        )
        # P3
        self.layer_3 = nn.Sequential(
            Conv(128, 256, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type),
            ResBlock(256, 256, nblocks=8, act_type=act_type, norm_type=norm_type)
        )
        # P4
        self.layer_4 = nn.Sequential(
            Conv(256, 512, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type),
            ResBlock(512, 512, nblocks=8, act_type=act_type, norm_type=norm_type)
        )
        # P5
        self.layer_5 = nn.Sequential(
            Conv(512, 1024, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type),
            ResBlock(1024, 1024, nblocks=4, act_type=act_type, norm_type=norm_type)
        )


    def forward(self, x):
        c1 = self.layer_1(x)
        c2 = self.layer_2(c1)
        c3 = self.layer_3(c2)
        c4 = self.layer_4(c3)
        c5 = self.layer_5(c4)

        outputs = [c3, c4, c5]

        return outputs

## DarkNet-Tiny
class DarkNetTiny(nn.Module):
    def __init__(self, act_type='silu', norm_type='BN'):
        super(DarkNetTiny, self).__init__()
        self.feat_dims = [64, 128, 256]

        # stride = 2
        self.layer_1 = nn.Sequential(
            Conv(3, 16, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type),
            ResBlock(16, 16, nblocks=1, act_type=act_type, norm_type=norm_type)
        )
        # stride = 4
        self.layer_2 = nn.Sequential(
            Conv(16, 32, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type),
            ResBlock(32, 32, nblocks=1, act_type=act_type, norm_type=norm_type)
        )
        # stride = 8
        self.layer_3 = nn.Sequential(
            Conv(32, 64, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type),
            ResBlock(64, 64, nblocks=3, act_type=act_type, norm_type=norm_type)
        )
        # stride = 16
        self.layer_4 = nn.Sequential(
            Conv(64, 128, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type),
            ResBlock(128, 128, nblocks=3, act_type=act_type, norm_type=norm_type)
        )
        # stride = 32
        self.layer_5 = nn.Sequential(
            Conv(128, 256, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type),
            ResBlock(256, 256, nblocks=2, act_type=act_type, norm_type=norm_type)
        )


    def forward(self, x):
        c1 = self.layer_1(x)
        c2 = self.layer_2(c1)
        c3 = self.layer_3(c2)
        c4 = self.layer_4(c3)
        c5 = self.layer_5(c4)

        outputs = [c3, c4, c5]

        return outputs


# --------------------- Functions -----------------------
def build_backbone(model_name='darknet53', pretrained=False): 
    """Constructs a darknet-53 model.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    if model_name == 'darknet53':
        backbone = DarkNet53(act_type='silu', norm_type='BN')
        feat_dims = backbone.feat_dims
    elif model_name == 'darknet_tiny':
        backbone = DarkNetTiny(act_type='silu', norm_type='BN')
        feat_dims = backbone.feat_dims

    if pretrained:
        url = model_urls[model_name]
        if url is not None:
            print('Loading pretrained weight ...')
            checkpoint = torch.hub.load_state_dict_from_url(
                url=url, map_location="cpu", check_hash=True)
            # checkpoint state dict
            checkpoint_state_dict = checkpoint.pop("model")
            # model state dict
            model_state_dict = backbone.state_dict()
            # check
            for k in list(checkpoint_state_dict.keys()):
                if k in model_state_dict:
                    shape_model = tuple(model_state_dict[k].shape)
                    shape_checkpoint = tuple(checkpoint_state_dict[k].shape)
                    if shape_model != shape_checkpoint:
                        checkpoint_state_dict.pop(k)
                else:
                    checkpoint_state_dict.pop(k)
                    print(k)

            backbone.load_state_dict(checkpoint_state_dict)
        else:
            print('No backbone pretrained: DarkNet53')        

    return backbone, feat_dims


if __name__ == '__main__':
    import time
    from thop import profile
    model, feats = build_backbone(model_name='darknet53', pretrained=True)
    x = torch.randn(1, 3, 224, 224)
    t0 = time.time()
    outputs = model(x)
    t1 = time.time()
    print('Time: ', t1 - t0)
    for out in outputs:
        print(out.shape)

    x = torch.randn(1, 3, 224, 224)
    print('==============================')
    flops, params = profile(model, inputs=(x, ), verbose=False)
    print('==============================')
    print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
    print('Params : {:.2f} M'.format(params / 1e6))

1.2 搭建neck网络

1.2.1 添加SPPF模块

  • 原始的YOLOv3中,neck只有特征金字塔,后来又出现了添加了SPP模块的YOLOv3,后续版本也能找到SPP模块,因此我们继续使用之前自己实现的YOLOv1、YOLOv2中的SPPF模块。
  • 代码在RT-ODLab/models/detectors/yolov3/yolov3_neck.py文件中,和之前一致,不在赘述。
  • 对于添加的SPPF模块,仅仅用来处理主干网络输出的C5特征图,这样可以提高网络的感受野。另外,激活函数换为SiLU。

1.2.2 添加特征金字塔

  • 在YOLOv3特征金字塔的基础上做了一些改进。
    • 去除YOLOv3最后3层单独的3×3卷积,替换为3层1×1卷积
    • 将每个尺度的通道数调整为256,方便后续利用解耦检测头进行检测。
python 复制代码
# RT-ODLab/models/detectors/yolov3/yolov3_fpn.py
import torch
import torch.nn as nn
import torch.nn.functional as F

from .yolov3_basic import Conv, ConvBlocks


# Yolov3FPN
class Yolov3FPN(nn.Module):
    def __init__(self,
                 in_dims=[256, 512, 1024],
                 width=1.0,
                 depth=1.0,
                 out_dim=None,
                 act_type='silu',
                 norm_type='BN'):
        super(Yolov3FPN, self).__init__()
        self.in_dims = in_dims
        self.out_dim = out_dim
        c3, c4, c5 = in_dims

        # P5 -> P4
        self.top_down_layer_1 = ConvBlocks(c5, int(512*width), act_type=act_type, norm_type=norm_type)
        self.reduce_layer_1 = Conv(int(512*width), int(256*width), k=1, act_type=act_type, norm_type=norm_type)

        # P4 -> P3
        self.top_down_layer_2 = ConvBlocks(c4 + int(256*width), int(256*width), act_type=act_type, norm_type=norm_type)
        self.reduce_layer_2 = Conv(int(256*width), int(128*width), k=1, act_type=act_type, norm_type=norm_type)

        # P3
        self.top_down_layer_3 = ConvBlocks(c3 + int(128*width), int(128*width), act_type=act_type, norm_type=norm_type)

        # output proj layers
        if out_dim is not None:
            # output proj layers
            self.out_layers = nn.ModuleList([
                Conv(in_dim, out_dim, k=1,
                        norm_type=norm_type, act_type=act_type)
                        for in_dim in [int(128 * width), int(256 * width), int(512 * width)]
                        ])
            self.out_dim = [out_dim] * 3

        else:
            self.out_layers = None
            self.out_dim = [int(128 * width), int(256 * width), int(512 * width)]


    def forward(self, features):
        c3, c4, c5 = features
        
        # p5/32
        # 1、经过Convolutional Set1得到P5
        p5 = self.top_down_layer_1(c5)

        # p4/16
        # 2、P5先降维,然后进行上采样,拼接后经过Convolutional Set2得到P4
        p5_up = F.interpolate(self.reduce_layer_1(p5), scale_factor=2.0)
        p4 = self.top_down_layer_2(torch.cat([c4, p5_up], dim=1))

        # P3/8
        # 3、同样,P3先降维,然后进行上采样,拼接后经过Convolutional Set3得到P3
        p4_up = F.interpolate(self.reduce_layer_2(p4), scale_factor=2.0)
        p3 = self.top_down_layer_3(torch.cat([c3, p4_up], dim=1))

        out_feats = [p3, p4, p5]

        # output proj layers
        if self.out_layers is not None:
            # output proj layers
            out_feats_proj = []
            # 4、对p3, p4, p5分别调整通道数为256
            for feat, layer in zip(out_feats, self.out_layers):
                out_feats_proj.append(layer(feat))
            return out_feats_proj

        return out_feats


def build_fpn(cfg, in_dims, out_dim=None):
    model = cfg['fpn']
    # build neck
    if model == 'yolov3_fpn':
        fpn_net = Yolov3FPN(in_dims=in_dims,
                            out_dim=out_dim,
                            width=cfg['width'],
                            depth=cfg['depth'],
                            act_type=cfg['fpn_act'],
                            norm_type=cfg['fpn_norm']
                            )

    return fpn_net

1.3 搭建检测头

  • 官方YOLOv3中的检测头是耦合的,将置信度、类别及边界框由1层1×1卷积在一个特张图上全部预测出来。
  • 我们这里使用两条并行分支,同时去完成分类和定位,继续采用解耦检测头。
  • 尽管不同尺度的解耦检测头的结构相同,但是参数不共享,这一点不同于RetinaNet的检测头。
python 复制代码
# RT-ODLab/models/detectors/yolov3/yolov3_head.py
import torch
import torch.nn as nn
try:
    from .yolov3_basic import Conv
except:
    from yolov3_basic import Conv


class DecoupledHead(nn.Module):
    def __init__(self, cfg, in_dim, out_dim, num_classes=80):
        super().__init__()
        print('==============================')
        print('Head: Decoupled Head')
        self.in_dim = in_dim
        self.num_cls_head=cfg['num_cls_head']
        self.num_reg_head=cfg['num_reg_head']
        self.act_type=cfg['head_act']
        self.norm_type=cfg['head_norm']

        # cls head
        cls_feats = []
        self.cls_out_dim = max(out_dim, num_classes)
        for i in range(cfg['num_cls_head']):
            if i == 0:
                cls_feats.append(
                    Conv(in_dim, self.cls_out_dim, k=3, p=1, s=1, 
                        act_type=self.act_type,
                        norm_type=self.norm_type,
                        depthwise=cfg['head_depthwise'])
                        )
            else:
                cls_feats.append(
                    Conv(self.cls_out_dim, self.cls_out_dim, k=3, p=1, s=1, 
                        act_type=self.act_type,
                        norm_type=self.norm_type,
                        depthwise=cfg['head_depthwise'])
                        )
                
        # reg head
        reg_feats = []
        self.reg_out_dim = max(out_dim, 64)
        for i in range(cfg['num_reg_head']):
            if i == 0:
                reg_feats.append(
                    Conv(in_dim, self.reg_out_dim, k=3, p=1, s=1, 
                        act_type=self.act_type,
                        norm_type=self.norm_type,
                        depthwise=cfg['head_depthwise'])
                        )
            else:
                reg_feats.append(
                    Conv(self.reg_out_dim, self.reg_out_dim, k=3, p=1, s=1, 
                        act_type=self.act_type,
                        norm_type=self.norm_type,
                        depthwise=cfg['head_depthwise'])
                        )

        self.cls_feats = nn.Sequential(*cls_feats)
        self.reg_feats = nn.Sequential(*reg_feats)


    def forward(self, x):
        """
            in_feats: (Tensor) [B, C, H, W]
        """
        cls_feats = self.cls_feats(x)
        reg_feats = self.reg_feats(x)

        return cls_feats, reg_feats
    

# build detection head
def build_head(cfg, in_dim, out_dim, num_classes=80):
    head = DecoupledHead(cfg, in_dim, out_dim, num_classes) 

    return head
  • 因为需要在三个尺度上都需要检测头,因此使用nn.ModuleList完成。
python 复制代码
# RT-ODLab/models/detectors/yolov3/yolov3.py
# YOLOv3
class YOLOv3(nn.Module):
    def __init__(self,
                 cfg,
                 device,
                 num_classes=20,
                 conf_thresh=0.01,
                 topk=100,
                 nms_thresh=0.5,
                 trainable=False,
                 deploy=False,
                 nms_class_agnostic=False):
        super(YOLOv3, self).__init__()
        ......
        
        # ------------------- Network Structure -------------------
        ## 主干网络
        self.backbone, feats_dim = build_backbone(
            cfg['backbone'], trainable&cfg['pretrained'])

        ## 颈部网络: SPP模块
        self.neck = build_neck(cfg, in_dim=feats_dim[-1], out_dim=feats_dim[-1])
        feats_dim[-1] = self.neck.out_dim

        ## 颈部网络: 特征金字塔
        self.fpn = build_fpn(cfg=cfg, in_dims=feats_dim, out_dim=int(256*cfg['width']))
        self.head_dim = self.fpn.out_dim

        ## 检测头
        self.non_shared_heads = nn.ModuleList(
                [build_head(cfg, head_dim, head_dim, num_classes) for head_dim in self.head_dim
            ])

1.4 搭建预测层

最后我们搭建每个尺度的预测层。

  • 对于类别预测,我们在解耦检测头的类别分支后接一层1×1卷积,去做分类;
  • 对于边界框预测,我们在解耦检测头的回归分支后接一层1×1卷积,去做定位;
  • 对于置信度预测,我们在解耦检测头的回归分支后接一层1×1卷积,预测边界框的预测框。
python 复制代码
 # RT-ODLab/models/detectors/yolov3/yolov3.py
        ## 预测层
        self.obj_preds = nn.ModuleList(
                            [nn.Conv2d(head.reg_out_dim, 1 * self.num_anchors, kernel_size=1) 
                                for head in self.non_shared_heads
                              ]) 
        self.cls_preds = nn.ModuleList(
                            [nn.Conv2d(head.cls_out_dim, self.num_classes * self.num_anchors, kernel_size=1) 
                                for head in self.non_shared_heads
                              ]) 
        self.reg_preds = nn.ModuleList(
                            [nn.Conv2d(head.reg_out_dim, 4 * self.num_anchors, kernel_size=1) 
                                for head in self.non_shared_heads
                              ])      

1.5 改进YOLOv3的详细网络图

  • 至此,我们完成了YOLOv3的网络结构的搭建,详解网络图如下:

2、YOLOv3的前向推理过程

2.1 解耦边界框坐标

2.1.1 先验框矩阵的生成

YOLOv3网络配置参数如下,我们从中能看到anchor_size变量。这是基于kmeans聚类,在COCO数据集上聚类出的先验框,由于COCO数据集更大、图片更加丰富,因此我们将这几个先验框用在VOC数据集上。

python 复制代码
# RT-ODLab/config/model_config/yolov3_config.py
# YOLOv3 Config

yolov3_cfg = {
    'yolov3':{
        # ---------------- Model config ----------------
        ## Backbone
        'backbone': 'darknet53',
        'pretrained': True,
        'stride': [8, 16, 32],  # P3, P4, P5
        'width': 1.0,
        'depth': 1.0,
        'max_stride': 32,
        ## Neck
        'neck': 'sppf',
        'expand_ratio': 0.5,
        'pooling_size': 5,
        'neck_act': 'silu',
        'neck_norm': 'BN',
        'neck_depthwise': False,
        ## FPN
        'fpn': 'yolov3_fpn',
        'fpn_act': 'silu',
        'fpn_norm': 'BN',
        'fpn_depthwise': False,
        ## Head
        'head': 'decoupled_head',
        'head_act': 'silu',
        'head_norm': 'BN',
        'num_cls_head': 2,
        'num_reg_head': 2,
        'head_depthwise': False,
        'anchor_size': [[10, 13],   [16, 30],   [33, 23],     # P3
                        [30, 61],   [62, 45],   [59, 119],    # P4
                        [116, 90],  [156, 198], [373, 326]],  # P5
        # ---------------- Train config ----------------
        ## input
        'trans_type': 'yolov5_large',
        'multi_scale': [0.5, 1.0],
        # ---------------- Assignment config ----------------
        ## matcher
        'iou_thresh': 0.5,
        # ---------------- Loss config ----------------
        ## loss weight
        'loss_obj_weight': 1.0,
        'loss_cls_weight': 1.0,
        'loss_box_weight': 5.0,
        # ---------------- Train config ----------------
        'trainer_type': 'yolov8',
    },

    'yolov3_tiny':{
        # ---------------- Model config ----------------
        ## Backbone
        'backbone': 'darknet_tiny',
        'pretrained': True,
        'stride': [8, 16, 32],  # P3, P4, P5
        'width': 0.25,
        'depth': 0.34,
        'max_stride': 32,
        ## Neck
        'neck': 'sppf',
        'expand_ratio': 0.5,
        'pooling_size': 5,
        'neck_act': 'silu',
        'neck_norm': 'BN',
        'neck_depthwise': False,
        ## FPN
        'fpn': 'yolov3_fpn',
        'fpn_act': 'silu',
        'fpn_norm': 'BN',
        'fpn_depthwise': False,
        ## Head
        'head': 'decoupled_head',
        'head_act': 'silu',
        'head_norm': 'BN',
        'num_cls_head': 2,
        'num_reg_head': 2,
        'head_depthwise': False,
        'anchor_size': [[10, 13],   [16, 30],   [33, 23],     # P3
                        [30, 61],   [62, 45],   [59, 119],    # P4
                        [116, 90],  [156, 198], [373, 326]],  # P5
        # ---------------- Train config ----------------
        ## input
        'trans_type': 'yolov5_nano',
        'multi_scale': [0.5, 1.0],
        # ---------------- Assignment config ----------------
        ## matcher
        'iou_thresh': 0.5,
        # ---------------- Loss config ----------------
        ## loss weight
        'loss_obj_weight': 1.0,
        'loss_cls_weight': 1.0,
        'loss_box_weight': 5.0,
        # ---------------- Train config ----------------
        'trainer_type': 'yolov8',
    },

}
  • YOLOv3在C3、C4和C5每个特征图上,在每个网格处放置3个先验框。

    • C3特征图,每个网格处放置(10, 13)、(16, 30)、(33, 23)三个先验框,用来检测较小的物体。
    • C4特征图,每个网格处放置(30, 61)、(62, 45)、(59, 119)三个先验框,用来检测中等大小的物体。
    • C5特征图,每个网格处放置(116, 90)、(156, 198)、(373, 326)三个先验框,用来检测较大的物体。
  • YOLOv3先验框矩阵生成的代码逻辑和YOLOv2相同。只是多1个level参数,用于标记是三个尺度的哪一个。每一个尺度都需要生成相应的先验框矩阵。

python 复制代码
    # RT-ODLab/models/detectors/yolov3/yolov3.py
    ## generate anchor points
    def generate_anchors(self, level, fmp_size):
        """
            fmp_size: (List) [H, W]
            level=0, 默认缩放后的图像为416×416,那么经过8倍下采样后, fmp_size为52×52
            level=1, 默认缩放后的图像为416×416,那么经过16倍下采样后,fmp_size为26×26
            level=2, 默认缩放后的图像为416×416,那么经过32倍下采样后,fmp_size为13×13
        """
        # 1、特征图的宽和高
        fmp_h, fmp_w = fmp_size
        # [KA, 2]
        anchor_size = self.anchor_size[level]

        # 2、生成网格的x坐标和y坐标
        anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
        # 3、将xy两部分的坐标拼接起来,shape为[H, W, 2]
        #    再转换下, shape变为[HW, 2]
        anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)

        # 4、引入了anchor box机制,每个网格包含A个anchor,因此每个(grid_x, grid_y)的坐标需要复制A(Anchor nums)份
        # 相当于  每个level每个网格左上角的坐标点复制3份  作为3个不同宽高anchor box的中心点
        # [HW, 2] -> [HW, KA, 2] -> [M, 2]
        anchor_xy = anchor_xy.unsqueeze(1).repeat(1, self.num_anchors, 1)
        anchor_xy = anchor_xy.view(-1, 2).to(self.device)

        # 5、每一个特征图的3组anchor box的宽高都复制fmp_size(例如: 13×13)份
        # [KA, 2] -> [1, KA, 2] -> [HW, KA, 2] -> [M, 2]
        anchor_wh = anchor_size.unsqueeze(0).repeat(fmp_h*fmp_w, 1, 1)
        anchor_wh = anchor_wh.view(-1, 2).to(self.device)
        # 6、将中心点和宽高cat起来,得到的shape为[M, 4]
        # level=0, 其中M=52×52×3 表示feature map为52×52,每个网格有3组anchor box
        # level=1, 其中M=26×26×3 表示feature map为26×26,每个网格有3组anchor box
        # level=2, 其中M=13×13×3 表示feature map为13×13,每个网格有3组anchor box
        anchors = torch.cat([anchor_xy, anchor_wh], dim=-1)

        return anchors

2.1.2 解算边界框

  • 生成先验框矩阵后,我们就能通过边界框偏移量reg_pred解耦出边界框坐标box_pred。
  • 在前向推理中,和之前YOLOv2逻辑一致,仅仅是多了多级检测部分的代码,需要经过for循环收集三个尺度的obj_preds, cls_preds和box_preds预测。
python 复制代码
# RT-ODLab/models/detectors/yolov3/yolov3.py
import torch
import torch.nn as nn

from utils.misc import multiclass_nms

from .yolov3_backbone import build_backbone
from .yolov3_neck import build_neck
from .yolov3_fpn import build_fpn
from .yolov3_head import build_head


# YOLOv3
class YOLOv3(nn.Module):
    def __init__(self,
                 cfg,
                 device,
                 num_classes=20,
                 conf_thresh=0.01,
                 topk=100,
                 nms_thresh=0.5,
                 trainable=False,
                 deploy=False,
                 nms_class_agnostic=False):
        super(YOLOv3, self).__init__()
        # ------------------- Basic parameters -------------------
        self.cfg = cfg                                 # 模型配置文件
        self.device = device                           # cuda或者是cpu
        self.num_classes = num_classes                 # 类别的数量
        self.trainable = trainable                     # 训练的标记
        self.conf_thresh = conf_thresh                 # 得分阈值
        self.nms_thresh = nms_thresh                   # NMS阈值
        self.topk = topk                               # topk
        self.stride = [8, 16, 32]                      # 网络的输出步长
        self.deploy = deploy
        self.nms_class_agnostic = nms_class_agnostic
        # ------------------- Anchor box -------------------
        self.num_levels = 3
        self.num_anchors = len(cfg['anchor_size']) // self.num_levels
        self.anchor_size = torch.as_tensor(
            cfg['anchor_size']
            ).float().view(self.num_levels, self.num_anchors, 2) # [S, A, 2]
        
        # ------------------- Network Structure -------------------
        ## 主干网络
        self.backbone, feats_dim = build_backbone(
            cfg['backbone'], trainable&cfg['pretrained'])

        ## 颈部网络: SPP模块
        self.neck = build_neck(cfg, in_dim=feats_dim[-1], out_dim=feats_dim[-1])
        feats_dim[-1] = self.neck.out_dim

        ## 颈部网络: 特征金字塔
        self.fpn = build_fpn(cfg=cfg, in_dims=feats_dim, out_dim=int(256*cfg['width']))
        self.head_dim = self.fpn.out_dim

        ## 检测头
        self.non_shared_heads = nn.ModuleList(
                [build_head(cfg, head_dim, head_dim, num_classes) for head_dim in self.head_dim
            ])

        ## 预测层
        self.obj_preds = nn.ModuleList(
                            [nn.Conv2d(head.reg_out_dim, 1 * self.num_anchors, kernel_size=1) 
                                for head in self.non_shared_heads
                              ]) 
        self.cls_preds = nn.ModuleList(
                            [nn.Conv2d(head.cls_out_dim, self.num_classes * self.num_anchors, kernel_size=1) 
                                for head in self.non_shared_heads
                              ]) 
        self.reg_preds = nn.ModuleList(
                            [nn.Conv2d(head.reg_out_dim, 4 * self.num_anchors, kernel_size=1) 
                                for head in self.non_shared_heads
                              ])                 
    

    # ---------------------- Basic Functions ----------------------
    ## generate anchor points
    def generate_anchors(self, level, fmp_size):
        ......
        
    ## post-process
    def post_process(self, obj_preds, cls_preds, box_preds):
        pass


    # ---------------------- Main Process for Inference ----------------------
    @torch.no_grad()
    def inference(self, x):
        # x.shape = (1, 3, 416, 416)

        # 主干网络
        # pyramid_feats[0] = (1, 256,  52, 52)
        # pyramid_feats[1] = (1, 512,  26, 26)
        # pyramid_feats[2] = (1, 1024, 13, 13)
        pyramid_feats = self.backbone(x)

        # 颈部网络(SPPF)
        # pyramid_feats[-1] = (1, 1024, 13, 13)
        pyramid_feats[-1] = self.neck(pyramid_feats[-1])

        # 特征金字塔
        # pyramid_feats[0] = (1, 256,  52, 52)
        # pyramid_feats[1] = (1, 256,  26, 26)
        # pyramid_feats[2] = (1, 256, 13, 13)
        pyramid_feats = self.fpn(pyramid_feats)

        # 检测头
        all_obj_preds = []
        all_cls_preds = []
        all_box_preds = []
        for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
            cls_feat, reg_feat = head(feat)
            # 回归分支和分类分支分别经过1×1卷积得到预测结果
            # [1, C, H, W]
            # level=0, obj_pred=(1, 3, 52, 52),cls_pred=(1, 3*20, 52, 52),cls_pred=(1, 3*4, 52, 52)
            # level=1, obj_pred=(1, 3, 26, 26),cls_pred=(1, 3*20, 26, 26),cls_pred=(1, 3*4, 26, 26)
            # level=2, obj_pred=(1, 3, 13, 13),cls_pred=(1, 3*20, 13, 13),cls_pred=(1, 3*4, 13, 13)
            obj_pred = self.obj_preds[level](reg_feat)
            cls_pred = self.cls_preds[level](cls_feat)
            reg_pred = self.reg_preds[level](reg_feat)

            # 每一个尺度,都需要生成边界框矩阵
            # anchors: [M, 2]
            fmp_size = cls_pred.shape[-2:]
            anchors = self.generate_anchors(level, fmp_size)

            # [1, AC, H, W] -> [H, W, AC] -> [M, C]
            obj_pred = obj_pred[0].permute(1, 2, 0).contiguous().view(-1, 1)
            cls_pred = cls_pred[0].permute(1, 2, 0).contiguous().view(-1, self.num_classes)
            reg_pred = reg_pred[0].permute(1, 2, 0).contiguous().view(-1, 4)

            # decode bbox
            # 解算边界框
            ctr_pred = (torch.sigmoid(reg_pred[..., :2]) + anchors[..., :2]) * self.stride[level]
            wh_pred = torch.exp(reg_pred[..., 2:]) * anchors[..., 2:]
            pred_x1y1 = ctr_pred - wh_pred * 0.5
            pred_x2y2 = ctr_pred + wh_pred * 0.5
            box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)

            all_obj_preds.append(obj_pred)
            all_cls_preds.append(cls_pred)
            all_box_preds.append(box_pred)



        # 循环结束,就得到了all_obj_preds, all_cls_preds, all_box_preds
        # 然后进行后处理
        if self.deploy:
            obj_preds = torch.cat(all_obj_preds, dim=0)
            cls_preds = torch.cat(all_cls_preds, dim=0)
            box_preds = torch.cat(all_box_preds, dim=0)
            scores = torch.sqrt(obj_preds.sigmoid() * cls_preds.sigmoid())
            bboxes = box_preds
            # [n_anchors_all, 4 + C]
            outputs = torch.cat([bboxes, scores], dim=-1)

            return outputs
        else:
            # post process
            bboxes, scores, labels = self.post_process(
                all_obj_preds, all_cls_preds, all_box_preds)
        
            return bboxes, scores, labels


    # ---------------------- Main Process for Training ----------------------
    def forward(self, x):
        if not self.trainable:
            return self.inference(x)
        else:
            ......

2.2 后处理

  • 经过for循环得到三个尺度所有的预测后,就进入到了后处理阶段。
  • 和YOLOv2的后处理的代码逻辑相同,但是因为多了多级检测,因此需要通过for循环,对每一个尺度的预测进行后处理。
  • 实现后处理的代码后,模型的forward函数就清晰了,不再赘述。
python 复制代码
    # RT-ODLab/models/detectors/yolov3/yolov3.py
    ## post-process
    def post_process(self, obj_preds, cls_preds, box_preds):
        """
        Input:
            obj_preds: List(Tensor) [[H x W x A, 1], ...] ,即[[52×52×3,  1], [26×26×3,  1], [13×13×3,  1]]
            cls_preds: List(Tensor) [[H x W x A, C], ...] ,即[[52×52×3, 20], [26×26×3, 20], [13×13×3, 20]]
            box_preds: List(Tensor) [[H x W x A, 4], ...] ,即[[52×52×3,  4], [26×26×3,  4], [13×13×3,  4]]
            anchors:   List(Tensor) [[H x W x A, 2], ...]
        """
        all_scores = []
        all_labels = []
        all_bboxes = []
        # 对每一个尺度循环
        for obj_pred_i, cls_pred_i, box_pred_i in zip(obj_preds, cls_preds, box_preds):
            # (H x W x KA x C,)
            scores_i = (torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid())).flatten()
            # 1、topk操作
            # Keep top k top scoring indices only.
            num_topk = min(self.topk, box_pred_i.size(0))

            # torch.sort is actually faster than .topk (at least on GPUs)
            predicted_prob, topk_idxs = scores_i.sort(descending=True)
            topk_scores = predicted_prob[:num_topk]
            topk_idxs = topk_idxs[:num_topk]
            # 2、滤掉低得分(边界框的score低于给定的阈值)的预测边界框
            # filter out the proposals with low confidence score
            keep_idxs = topk_scores > self.conf_thresh
            scores = topk_scores[keep_idxs]
            topk_idxs = topk_idxs[keep_idxs]
            # 获取flatten之前topk_scores所在的idx以及相应的label
            anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
            labels = topk_idxs % self.num_classes

            bboxes = box_pred_i[anchor_idxs]

            all_scores.append(scores)
            all_labels.append(labels)
            all_bboxes.append(bboxes)
        # 将三个尺度的预测结果concat起来,然后进行nms
        scores = torch.cat(all_scores)
        labels = torch.cat(all_labels)
        bboxes = torch.cat(all_bboxes)

        # to cpu & numpy
        scores = scores.cpu().numpy()
        labels = labels.cpu().numpy()
        bboxes = bboxes.cpu().numpy()

        # nms
        #  3、滤掉那些针对同一目标的冗余检测。
        scores, labels, bboxes = multiclass_nms(
            scores, labels, bboxes, self.nms_thresh, self.num_classes, self.nms_class_agnostic)

        return bboxes, scores, labels

接下来,就到了正样本的匹配和损失函数计算了、以及数据预处理。

  • 正样本的匹配和损失函数计算,我们会延续之前YOLOv2的做法。
  • 对于数据预处理、数据增强等,我们不再采用之前SSD风格的处理手段,而是选择YOLOv5的数据处理方法来训练我们的YOLOv3。
相关推荐
Power20246661 小时前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp
数据猎手小k1 小时前
AIDOVECL数据集:包含超过15000张AI生成的车辆图像数据集,目的解决旨在解决眼水平分类和定位问题。
人工智能·分类·数据挖掘
好奇龙猫1 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
沉下心来学鲁班1 小时前
复现LLM:带你从零认识语言模型
人工智能·语言模型
数据猎手小k1 小时前
AndroidLab:一个系统化的Android代理框架,包含操作环境和可复现的基准测试,支持大型语言模型和多模态模型。
android·人工智能·机器学习·语言模型
YRr YRr1 小时前
深度学习:循环神经网络(RNN)详解
人工智能·rnn·深度学习
sp_fyf_20241 小时前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-01
人工智能·深度学习·神经网络·算法·机器学习·语言模型·数据挖掘
多吃轻食2 小时前
大模型微调技术 --> 脉络
人工智能·深度学习·神经网络·自然语言处理·embedding
北京搜维尔科技有限公司2 小时前
搜维尔科技:【应用】Xsens在荷兰车辆管理局人体工程学评估中的应用
人工智能·安全
说私域2 小时前
基于开源 AI 智能名片 S2B2C 商城小程序的视频号交易小程序优化研究
人工智能·小程序·零售