大规模机器学习(Large Scale Machine Learning)

1.大型数据集的学习

案例:

如果我们有一个低方差的模型,增加数据集的规模可以帮助你获得更好的结果。我们应该怎样应对一个有 100 万条记录的训练集?

以线性回归模型为例,每一次梯度下降迭代,我们都需要计算训练集的误差的平方和,如果我们的学习算法需要有 20 次迭代,这便已经是非常大的计算代价。首先应该做的事是去检查一个这么大规模的训练集是否真的必要,也许我们只用 1000个训练集也能获得较好的效果,我们可以绘制学习曲线来帮助判断。

2.随机梯度下降

果我们一定需要一个大规模的训练集,我们可以尝试使用随机梯度下降法(SGD)来代替批量梯度下降法。

在随机梯度下降法中,我们定义代价函数为一个单一训练实例的代价:

随机梯度下降算法在每一次计算之后便更新参数 𝜃 ,而不需要首先将所有的训练集求和,在梯度下降算法还没有完成一次迭代时,随机梯度下降算法便已经走出了很远。但是这

样的算法存在的问题是,不是每一步都是朝着"正确"的方向迈出的。因此算法虽然会逐渐走向全局最小值的位置,但是可能无法站到那个最小值的那一点,而是在最小值点附近徘徊。

3.小批量梯度下降

小批量梯度下降算法是介于批量梯度下降算法和随机梯度下降算法之间的算法,每计算常数𝑏次训练实例,便更新一次参数 𝜃 。

通常我们会令 𝑏 在 2-100 之间。这样做的好处在于,我们可以用向量化的方式来循环𝑏个训练实例,如果我们用的线性代数函数库比较好,能够支持平行处理,那么算法的总体表现将不受影响(与随机梯度下降相同)。

4.随机梯度下降收敛

学习随机梯度下降算法的调试,以及学习率 𝛼 的选取。

在批量梯度下降中,我们可以令代价函数𝐽为迭代次数的函数,绘制图表,根据图表来判断梯度下降是否收敛。但是,在大规模的训练集的情况下,这是不现实的,因为计算代价

太大了。

在随机梯度下降中,我们在每一次更新 𝜃 之前都计算一次代价,然后每𝑥次迭代后,求出这𝑥次对训练实例计算代价的平均值,然后绘制这些平均值与𝑥次迭代的次数之间的函数图表。

当我们绘制这样的图表时,可能会得到一个颠簸不平但是不会明显减少的函数图像(如上面左下图中蓝线所示)。我们可以增加𝛼来使得函数更加平缓,也许便能看出下降的趋势

了(如上面左下图中红线所示);或者可能函数图表仍然是颠簸不平且不下降的(如洋红色线所示),那么我们的模型本身可能存在一些错误。

如果我们得到的曲线如上面右下方所示,不断地上升,那么我们可能会需要选择一个较小的学习率𝛼。我们也可以令学习率随着迭代次数的增加而减小,例如令:

随着我们不断地靠近全局最小值,通过减小学习率,我们迫使算法收敛而非在最小值附近徘徊。 但是通常我们不需要这样做便能有非常好的效果了,对𝛼进行调整所耗费的计算通

常不值得。

总结:本小节介绍了一种方法,近似地监测出随机梯度下降算法在最优化代价函数中的表现,这种方法不需要定时地扫描整个训练集,来算出整个样本集的代价函数,而是只需要每次对最后 1000 个,或者多少个样本,求一下平均值。应用这种方法,你既可以保证随机梯度下降法正在正常运转和收敛,也可以用它来调整学习速率𝛼的大小。

5.在线学习

新的大规模的机器学习机制,叫做在线学习机制。在线学习机制让我们可以模型化问题.

案例:

假定你有一个提供运输服务的公司,用户们来向你询问把包裹从 A 地运到 B 地的服务,同时假定你有一个网站,让用户们可多次登陆,然后他们告诉你,他们想从哪里寄出包裹,

以及包裹要寄到哪里去,也就是出发地与目的地,然后你的网站开出运输包裹的的服务价格。比如,我会收取$50 来运输你的包裹,我会收取$20 之类的,然后根据你开给用户的这个价格,用户有时会接受这个运输服务,那么这就是个正样本,有时他们会走掉,然后他们拒绝购买你的运输服务,所以,让我们假定我们想要一个学习算法来帮助我们,优化我们想给用户开出的价格。

一个算法来从中学习的时候来模型化问题在线学习算法指的是对数据流而非离线的静态数据集的学习。许多在线网站都有持续不断的用户流,对于每一个用户,网站希望能在不

将数据存储到数据库中便顺利地进行算法学习。

在线学习的算法与随机梯度下降算法有些类似,我们对单一的实例进行学习,而非对一个提前定义的训练集进行循环。

一旦对一个数据的学习完成了,我们便可以丢弃该数据,不需要再存储它了。这种方式的好处在于,我们的算法可以很好的适应用户的倾向性,算法可以针对用户的当前行为不断

地更新模型以适应该用户。

每次交互事件并不只产生一个数据集,例如,我们一次给用户提供 3 个物流选项,用户选择 2 项,我们实际上可以获得 3 个新的训练实例,因而我们的算法可以一次从 3 个实例中学习并更新模型。

这些问题中的任何一个都可以被归类到标准的,拥有一个固定的样本集的机器学习问题中。或许,你可以运行一个你自己的网站,尝试运行几天,然后保存一个数据集,一个固定

的数据集,然后对其运行一个学习算法。但是这些是实际的问题,在这些问题里,你会看到大公司会获取如此多的数据,真的没有必要来保存一个固定的数据集,取而代之的是你可以使用一个在线学习算法来连续的学习,从这些用户不断产生的数据中来学习。这就是在线学习机制,然后就像我们所看到的,我们所使用的这个算法与随机梯度下降算法非常类似,唯一的区别的是,我们不会使用一个固定的数据集,我们会做的是获取一个用户样本,从那个样本中学习,然后丢弃那个样本并继续下去,而且如果你对某一种应用有一个连续的数据流,这样的算法可能会非常值得考虑。当然,在线学习的一个优点就是,如果你有一个变化的用

户群,又或者你在尝试预测的事情,在缓慢变化,就像你的用户的品味在缓慢变化,这个在线学习算法,可以慢慢地调试你所学习到的假设,将其调节更新到最新的用户行为。

6.映射化简和数据并行

如果我们能够将我们的数据集分配给不多台

计算机,让每一台计算机处理数据集的一个子集,然后我们将计所的结果汇总在求和。这样的方法叫做映射简化。

具体而言,如果任何学习算法能够表达为,对训练集的函数的求和,那么便能将这个任务分配给多台计算机(或者同一台计算机的不同 CPU 核心),以达到加速处理的目的。

例如,我们有 400 个训练实例,我们可以将批量梯度下降的求和任务分配给 4 台计算机进行处理:

很多高级的线性代数函数库已经能够利用多核 CPU 的多个核心来并行地处理矩阵运算,这也是算法的向量化实现如此重要的缘故(比调用循环快)。

8.应用实例:图片文字识别(Application Example: Photo OCR)

1.问题描述和流程图

图像文字识别应用所作的事是,从一张给定的图片中识别文字。这比从一份扫描文档中识别文字要复杂的多。

为了完成这样的工作,需要采取如下步骤:

1.文字侦测(Text detection)------将图片上的文字与其他环境对象分离开来

2.字符切分(Character segmentation)------将文字分割成一个个单一的字符

3.字符分类(Character classification)------确定每一个字符是什么 可以用任务流程图来

表达这个问题,每一项任务可以由一个单独的小队来负责解决:

2.滑动窗口

滑动窗口是一项用来从图像中抽取对象的技术。假使我们需要在一张图片中识别行人,

首先要做的是用许多固定尺寸的图片来训练一个能够准确识别行人的模型。然后我们用之前训练识别行人的模型时所采用的图片尺寸在我们要进行行人识别的图片上进行剪裁,然后将剪裁得到的切片交给模型,让模型判断是否为行人,然后在图片上滑动剪裁区域重新进行剪裁,将新剪裁的切片也交给模型进行判断,如此循环直至将图片全部检测完。

一旦完成后,我们按比例放大剪裁的区域,再以新的尺寸对图片进行剪裁,将新剪裁的切片按比例缩小至模型所采纳的尺寸,交给模型进行判断,如此循环。

滑动窗口技术也被用于文字识别,首先训练模型能够区分字符与非字符,然后,运用滑动窗口技术识别字符,一旦完成了字符的识别,我们将识别得出的区域进行一些扩展,然后

将重叠的区域进行合并。接着我们以宽高比作为过滤条件,过滤掉高度比宽度更大的区域(认为单词的长度通常比高度要大)。下图中绿色的区域是经过这些步骤后被认为是文字的区域,而红色的区域是被忽略的。

以上便是文字侦测阶段。 下一步是训练一个模型来完成将文字分割成一个个字符的任务,需要的训练集由单个字符的图片和两个相连字符之间的图片来训练模型。

模型训练完后,我们仍然是使用滑动窗口技术来进行字符识别。

以上便是字符切分阶段。 最后一个阶段是字符分类阶段,利用神经网络、支持向量机或者逻辑回归算法训练一个分类器即可。
3.获取大量数据和人工数据

以我们的文字识别应用为例,我们可以字体网站下载各种字体,然后利用这些不同的字

体配上各种不同的随机背景图片创造出一些用于训练的实例,这让我们能够获得一个无限大

的训练集。这是从零开始创造实例。

另一种方法是,利用已有的数据,然后对其进行修改,例如将已有的字符图片进行一些

扭曲、旋转、模糊处理。只要我们认为实际数据有可能和经过这样处理后的数据类似,我们

便可以用这样的方法来创造大量的数据。

有关获得更多数据的几种方法:

1.人工数据合成

2.手动收集、标记数据

3.众包

4.上限分析:哪部分管道的接下去做

文字识别应用的流程图如下:

流程图中每一部分的输出都是下一部分的输入,上限分析中,选取一部分,手工提供 100%正确的输出结果,然后看应用的整体效果提升了多少。假使例子中总体效果为 72%的正确率。

如果令文字侦测部分输出的结果 100%正确,发现系统的总体效果从 72%提高到了89%。这意味着很可能会希望投入时间精力来提高我们的文字侦测部分。

接着手动选择数据,让字符切分输出的结果 100%正确,发现系统的总体效果只提升了 1%,这意味着,字符切分部分可能已经足够好了。

最后手工选择数据,让字符分类输出的结果 100%正确,系统的总体效果又提升了10%,这意味着可能也会应该投入更多的时间和精力来提高应用的总体表现。

相关推荐
谢眠1 分钟前
深度学习day3-自动微分
python·深度学习·机器学习
搏博11 分钟前
神经网络问题之一:梯度消失(Vanishing Gradient)
人工智能·机器学习
z千鑫11 分钟前
【人工智能】深入理解PyTorch:从0开始完整教程!全文注解
人工智能·pytorch·python·gpt·深度学习·ai编程
YRr YRr19 分钟前
深度学习:神经网络的搭建
人工智能·深度学习·神经网络
威桑21 分钟前
CMake + mingw + opencv
人工智能·opencv·计算机视觉
爱喝热水的呀哈喽25 分钟前
torch张量与函数表达式写法
人工智能·pytorch·深度学习
rellvera32 分钟前
【强化学习的数学原理】第02课-贝尔曼公式-笔记
笔记·机器学习
肥猪猪爸1 小时前
使用卡尔曼滤波器估计pybullet中的机器人位置
数据结构·人工智能·python·算法·机器人·卡尔曼滤波·pybullet
LZXCyrus1 小时前
【杂记】vLLM如何指定GPU单卡/多卡离线推理
人工智能·经验分享·python·深度学习·语言模型·llm·vllm
我感觉。2 小时前
【机器学习chp4】特征工程
人工智能·机器学习·主成分分析·特征工程