Spark——Spark读写Greenplum/Greenplum-Spark Connector高速写Greenplum

文章目录

问题背景

通过数据平台上的DataX把Hive表数据同步至Greenplum(因为DataX原生不支持Greenplum Writer,只能采用PostgreSQL驱动的方式),但是同步速度太慢了,<100Kb/s(DataX服务器和Greenplum服务器都在内网,实测服务器间传输文件速率可以达到170Mb/s+),根本没法用。

解决方式

查看Greenplum官网,给出了以下几种将外部数据写入Greenplum方式:

  • JDBC:JDBC方式,写大数据量会很慢。
  • gpload:适合写大数据量数据,能并行写入。但其缺点是需要安装客户端,包括gpfdist等依赖,安装起来很麻烦。需要了解可以参考gpload。
  • Greenplum-Spark Connector:基于Spark并行处理,并行写入Greenplum,并提供了并行读取的接口。

而我们之前采用的PostgreSQL驱动的方式就是因为使用了JDBC,导致写入速度非常慢。综合官网提供的这3中方式,我们最终选择了Greenplum-Spark Connector这种方式,但是只提供了Spark2.3版本支持,其他版本未验证过。

Greenplum-Spark Connector具体的读写架构和流程,请参考Greenplum官网文档:https://cn.greenplum.org/greenplum-spark-connector/

代码实现

Greenplum-Spark Connector需要引入两个依赖包:

greenplum-spark_2.11-2.3.0.jar无法通过Maven自动下载,需要到上面网址手动下载,且要先注册网址账号才允许下载。

Spark写Greenplum

代码实现:

scala 复制代码
package com.demo

import org.apache.spark.sql.{SaveMode, SparkSession}

import java.time.LocalDateTime
import java.time.format.DateTimeFormatter

object SparkWriteGreenplum {
  def main(args: Array[String]): Unit = {
    val spark = SparkSession.builder()
      .appName("Spark to Greenplum")
      .enableHiveSupport()
      .getOrCreate()
    spark.sparkContext.setLogLevel("INFO")

    // main函数传参数获取表名
    val tableName = args(0)
    val days = args(1).toLong

    /** spark写greenplum */
    //Greenplum配置信息
    val gscWriteOptionMap = Map(
      "url" -> "jdbc:postgresql://host:5432/db",
      "user" -> "u",
      "password" -> "p",
      "dbschema" -> "schema",
      "dbtable" -> "table"
    )

    // Hiv表分区
    val ds = LocalDateTime.now().minusDays(days).format(DateTimeFormatter.ofPattern("yyyyMMdd"))
    // 读取Hive表
    val df = spark.sql("select * from db." + tableName + " where ds = " + ds)

    // Dataframe写Greenplum
    df.write
      .format("greenplum")
      .mode(SaveMode.Overwrite)
      .options(gscWriteOptionMap)
      .save()
    spark.stop()
  }
}

最终以4个executor、每个executor 1核1G执行Spark任务,1400w+条数据,3分钟左右就导完了,效果提升非常明显。

Spark读Greenplum

scala 复制代码
    // spark读greenplum
    val gscReadOptionMap = Map(
      "url" -> "jdbc:postgresql://host:5432/db",
      "user" -> "u",
      "password" -> "p",
      "dbschema" -> "sc",
      "dbtable" -> "table"
    )

    val df: DataFrame = spark.read.format("greenplum")
      .options(gscReadOptionMap)
      .load()
    df.show()

参考

  1. https://cn.greenplum.org/greenplum-spark-connector/
  2. https://greenplum-spark-connector.readthedocs.io/en/latest/Write-data-from-Spark-into-Greenplum.html
  3. https://network.pivotal.io/products/vmware-greenplum#/releases/1427678/file_groups/17497
相关推荐
知秋正在9961 小时前
ElasticSearch服务端报错:FileSystemException: No space left on device
大数据·elasticsearch·搜索引擎
哈哈哈笑什么1 小时前
蜜雪冰城1分钱奶茶秒杀活动下,使用分片锁替代分布式锁去做秒杀系统
redis·分布式·后端
智元视界1 小时前
农业AI化:如何让一台无人机懂得“看天种地”?
大数据·人工智能·prompt·无人机·数字化转型·产业升级
Deepoch2 小时前
Deepoc-M 破局:半导体研发告别试错内耗
大数据·人工智能·数学建模·半导体·具身模型·deepoc
金融小师妹2 小时前
基于NLP政策信号解析的联邦基金利率预测:美银动态调整12月降息概率至88%,2026年双降路径的强化学习模拟
大数据·人工智能·深度学习·1024程序员节
哈哈哈笑什么2 小时前
高并发分布式Springcloud系统下,使用RabbitMQ实现订单支付完整闭环的实现方案(反向撤销+重试+补偿)
分布式·spring cloud·rabbitmq
新诺韦尔API3 小时前
手机空号检测接口对接全流程指南
大数据·网络·智能手机·api
哈哈哈笑什么3 小时前
分布式高并发Springcloud系统下的数据图同步断点续传方案【订单/商品/用户等】
分布式·后端·spring cloud
LDG_AGI3 小时前
【推荐系统】深度学习训练框架(十三):模型输入——《特征索引》与《特征向量》的边界
人工智能·pytorch·分布式·深度学习·算法·机器学习
知秋正在9964 小时前
ElasticSearch服务端报错:system call filters failed to install
大数据·elasticsearch·搜索引擎