论文笔记:SQLPrompt: In-Context Text-to-SQL with Minimal Labeled Data

导语

本文提出了SQLPrompt,通过创新的Prompt设计、基于执行一致性的解码策略,以及混合不同格式的Prompt和不同LLMs输出的方式,提高了LLM在Few-shot In-context Learning下的能力。

1 简介

这项研究介绍了"SQLPrompt",一种针对大型语言模型(LLMs)中的Text-to-SQL任务进行少标签数据下的上下文提示的方法。SQLPrompt通过创新的提示设计、基于执行一致性的解码策略(选择最一致的执行结果SQL),以及"MixPrompt"和"MixLLMs"方法(增加不同提示设计和基础模型中SQL提议的多样性)来提高少示例提示的能力。结果表明,SQLPrompt在少标签数据的上下文学习中表现优异,与使用数千标签数据进行微调的最新技术相比,缩小了差距。

2 方法

作者实际上提出了4个小的模块,构成了SQLPrompt,分别为:

  • Prompt设计:Prompt中包括数据库schema、主/外键和数据库内容。本文给出了两种不同的Prompt格式,分别为
    • Concise promptsTable1 name: column name 1, column name 2 (relevant database content) | Table2 name: column1 ...
    • Verbose promptsTable "CarNames" contains three columns. The column names and their types are : MakeID (number), Model (string) ..."; "Foreign keys are ... Use foreign keys to join Tables
  • Execution-based consistency decoding:基于执行一致性的解码策略实际上就是对LLM进行多次采样生成,然后对生成的SQL语句进行执行,选择执行结果最一致的那个SQL;
  • MixPrompt:将不同的Prompt格式进行混合作为Few-shot的示例;
  • MixLLMs:将输入分别输入给不同的LLM进行生成采样;

从作者给出的这个流程图中可以很清楚的看到这4个模块。

3 实验

  • 任务和数据集:考虑Spider跨领域大规模Text-to-SQL基准测试。
  • 模型:包括不同版本的PaLM和FLAN模型。
  • 微调模型:包括PICARD、RASAT和RESDSQL等。
  • 上下文学习模型:包括对CodeX、GPT-3和ChatGPT的评估。

4 结果

  • 性能比较:SQLPrompt在上下文学习和微调方法中表现优异,特别是在执行准确度(EX)和测试准确度(TS)方面。
  • 消融研究 :研究了SQLPrompt的多个组件各自对于最终结果的影响,包括
    • 提示设计、
    • 基于执行的一致性解码、
    • MixPrompt和
    • MixLLMs。

从表格2-5可以看到,作者提出的这四个模块都对最终的SQLPrompt方法有提升。

5 结论

SQLPrompt通过创新的提示设计和一致性解码策略,显著提高了Text-to-SQL任务的性能。其在处理少量标签数据时的能力尤其突出,为Text-to-SQL领域提供了一个有力的新工具。

相关推荐
FreeCode几秒前
LangChain1.0智能体开发:流输出组件
人工智能·langchain·agent
故作春风6 分钟前
手把手实现一个前端 AI 编程助手:从 MCP 思想到 VS Code 插件实战
前端·人工智能
人工智能训练15 分钟前
在ubuntu系统中如何将docker安装在指定目录
linux·运维·服务器·人工智能·ubuntu·docker·ai编程
掘金一周17 分钟前
没开玩笑,全框架支持的 dialog 组件,支持响应式| 掘金一周 11.6
前端·人工智能
CoovallyAIHub28 分钟前
首个大规模、跨模态医学影像编辑数据集,Med-Banana-50K数据集专为医学AI打造(附数据集地址)
深度学习·算法·计算机视觉
电鱼智能的电小鱼41 分钟前
基于电鱼 ARM 边缘网关的智慧工地数据可靠传输方案——断点续传 + 4G/5G冗余通信,保障数据完整上传
arm开发·人工智能·嵌入式硬件·深度学习·5g·机器学习
Juchecar1 小时前
翻译:Agentic AI:面向企业应用的智能
人工智能
武子康1 小时前
AI研究-121 DeepSeek-OCR 研究路线:无限上下文、跨模态抽取、未来创意点、项目创意点
人工智能·深度学习·机器学习·ai·ocr·deepseek·deepseek-ocr
半臻(火白)1 小时前
从“看见文字”到“理解内容”:DeepSeek-OCR重构OCR 2.0时代的效率革命
人工智能
暴风鱼划水1 小时前
三维重建【4-A】3D Gaussian Splatting:代码解读
python·深度学习·3d·3dgs