锦上添花!特征选择+深度学习:mRMR-CNN-BiGRU-Attention故障识别模型!特征按重要性排序!最大相关最小冗余!

适用平台:Matlab2023版及以上

特征选择方法:"最大相关最小冗余" (Maximal Relevance and Minimal Redundancy,简称MRMR)是一种用于特征选择的方法。该方法旨在找到最相关的特征集,同时最小化特征之间的冗余,以提高模型的性能和泛化能力。我们将该特征选择方法应用于CNN-BiGRU-Attention故障识别模型上,构建的mRMR-CNN-BiGRU-Attention故障识别模型目前还没人写哦。

在具体的数学表达上,最大相关最小冗余方法通常通过优化某个相关性度量和冗余度量的组合来实现。最常用的相关性度量是皮尔逊相关系数,而冗余度量通常使用互信息或方差。通过调整特征子集中每个特征的权重,可以实现最大化相关性和最小化冗余。

这个方法的优势在于它不仅关注特征与目标变量的关系,还考虑了特征之间的相互关系,以避免选择高度相关的特征,从而减少模型的过拟合风险,增强模型的可解释性。

用mRMR选择5个最重要的特征作为RMR-CNN-BiGRU-Attention故障识别模型的输入:

创新点:

  • 特征选择优化: mRMR特征选择的方法,通过最大化特征与目标变量的相关性,同时最小化特征之间的冗余,给特征变量的选择提供有效依据,提高模型的可解释性。

  • **时序-空间特征结合:**CNN通过卷积层可以有效地捕捉输入故障波形中的局部特征,如脉冲、振动或其它突变。而GRU则能够学习序列中的长期依赖关系,捕捉全局特征,提高了对故障波形中复杂特征的提取能力。

  • **故障前后特征:**BiGRU双向记忆单元对时间序列进行特征提取,捕捉时间上相邻的特征,同时考虑故障前后所包含的特征。

  • **多头自注意力机制:**自注意力层被嵌入到BiGRU层后,自注意力层用于捕捉故障波形中的全局依赖关系,自注意力机制允许网络在学习时动态地调整各个采样点的权重,以便更好地捕捉长期依赖和全局模式,实现各特征的重点强化。

程序数据集格式:

数据格式:一行为一个故障样本也可以看成一个故障波形,最后一列表示该样本所属的故障类别,即故障类别标签。

程序结果:

模型结构和 测试集的混淆矩阵:

精确率是混淆矩阵的最下面一行,召回率是混淆矩阵的最右边一列

  • 精确率:指模型在预测为正类别的样本中,实际为正类别的样本所占的比例。它衡量的是模型在正类别的预测中的准确性。

  • 召回率:指实际为正类别的样本中,模型成功预测为正类别的样本所占的比例。它衡量的是模型对正类别样本的覆盖能力。

训练集和测试集的散点图:

程序展示准确率、精确率、召回率、F1分数等计算结果:

训练的精确度及损失曲线:

部分代码:

Matlab 复制代码
%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_dim = size(res, 2) - 1;               % 特征维度  公众号:创新优化及预测代码
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)
flag_conusion = 1;                        % 标志位为1,打开混淆矩阵(要求2018版本及以上)

%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];

%%  划分数据集
for i = 1 : num_class
    mid_res = res((res(:, end) == i), :);           % 循环取出不同类别的样本
    mid_size = size(mid_res, 1);                    % 得到不同类别样本个数
    mid_tiran = round(num_size * mid_size);         % 得到该类别的训练样本个数

    P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)];       % 训练集输入
    T_train = [T_train; mid_res(1: mid_tiran, end)];              % 训练集输出

    P_test  = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)];  % 测试集输入
    T_test  = [T_test; mid_res(mid_tiran + 1: end, end)];         % 测试集输出
end

%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';

%%  得到训练集和测试样本个数
M = size(P_train, 2);
N = size(P_test , 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test  = mapminmax('apply', P_test, ps_input);

t_train =  categorical(T_train)';
t_test  =  categorical(T_test )';
 
%%  数据平铺  公众号:创新优化及预测代码
%   将数据平铺成1维数据只是一种处理方式
%   也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
%   但是应该始终和输入层数据结构保持一致
p_train =  double(reshape(P_train, num_dim, 1, 1, M));
p_test  =  double(reshape(P_test , num_dim, 1, 1, N));

%% 构造CNN-BiGRU-Attention网络
lgraph = layerGraph();

% 添加层分支 公众号:创新优化及预测代码
% 将网络分支添加到层次图中。每个分支均为一个线性层组。
tempLayers = [
    imageInputLayer([numComponents 1 1],"Name","imageinput")
    convolution2dLayer([2 1],16,"Name","conv_1")
    batchNormalizationLayer("Name","batchnorm_1")
    reluLayer("Name","relu_1")
    maxPooling2dLayer([2 1],"Name","maxpool_1")
    flattenLayer("Name","flatten")];
lgraph = addLayers(lgraph,tempLayers);

tempLayers = gruLayer(128,"Name","gru");
lgraph = addLayers(lgraph,tempLayers);

tempLayers = [
    FlipLayer("flip3")
    gruLayer(128,"Name","gru_1")];
lgraph = addLayers(lgraph,tempLayers);
相关推荐
孤独且没人爱的纸鹤7 分钟前
【机器学习】深入无监督学习分裂型层次聚类的原理、算法结构与数学基础全方位解读,深度揭示其如何在数据空间中构建层次化聚类结构
人工智能·python·深度学习·机器学习·支持向量机·ai·聚类
后端研发Marion9 分钟前
【AI编辑器】字节跳动推出AI IDE——Trae,专为中文开发者深度定制
人工智能·ai编程·ai程序员·trae·ai编辑器
Tiger Z32 分钟前
R 语言科研绘图 --- 散点图-汇总
人工智能·程序人生·r语言·贴图
小深ai硬件分享2 小时前
Keras、TensorFlow、PyTorch框架对比及服务器配置揭秘
服务器·人工智能·深度学习
hunter2062063 小时前
用opencv生成视频流,然后用rtsp进行拉流显示
人工智能·python·opencv
Daphnis_z3 小时前
大模型应用编排工具Dify之常用编排组件
人工智能·chatgpt·prompt
yuanbenshidiaos4 小时前
【大数据】机器学习----------强化学习机器学习阶段尾声
人工智能·机器学习
盼小辉丶9 小时前
TensorFlow深度学习实战——情感分析模型
深度学习·神经网络·tensorflow
好评笔记9 小时前
AIGC视频生成模型:Stability AI的SVD(Stable Video Diffusion)模型
论文阅读·人工智能·深度学习·机器学习·计算机视觉·面试·aigc
算家云9 小时前
TangoFlux 本地部署实用教程:开启无限音频创意脑洞
人工智能·aigc·模型搭建·算家云、·应用社区·tangoflux