机器学习2-简单的二分类问题

需求:

假设现在需要对数据 进行二分类 ,小于0.5的,打上0的标记 ,大于0.5的,打上1的标记,怎么做

分析:

这是一个简单的二分类 问题,使用逻辑回归模型。

代码:

python 复制代码
# 导入所需的库,如需安装:pip install scikit-learn matplotlib
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, confusion_matrix

# 创建一个随机的二分类数据集
np.random.seed(42)
X = np.random.rand(100, 1)
print("X:\n", X)
y = (X > 0.5).astype(int)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
print("X_train:\n", X_train)

# 创建并训练逻辑回归模型
model = LogisticRegression()
model.fit(X_train, y_train)

# 预测测试集
y_pred = model.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy}')

# 可视化决策边界
plt.scatter(X, y, color='blue', marker='o', label='Class 0')
plt.scatter(X_test, y_test, color='red', marker='x', label='Test Data')
plt.xlabel('Feature')
plt.ylabel('Class')
plt.legend()
plt.title('Logistic Regression Decision Boundary')
plt.axhline(0.5, color='green', linestyle='--', linewidth=2, label='Decision Boundary')
plt.show()

运行结果:

如图可见Test Data的标记都是正确的

执行下来的准确率

Accuracy: 1.0

结论: 模型预测使用测试集 (X_test) 进行预测,得到预测值 y_pred,都满足预期

相关推荐
爱思德学术1 分钟前
EI会议:第三届大数据、计算智能与应用国际会议(BDCIA 2025)
大数据·机器学习·数据可视化·计算智能
王嘉俊9253 分钟前
HarmonyOS 分布式与 AI 集成:构建智能协同应用的进阶实践
人工智能·分布式·harmonyos
StarPrayers.3 分钟前
CNN 模型搭建与训练:PyTorch 实战 CIFAR10 任务
人工智能·pytorch·cnn
赋创小助手3 分钟前
实测对比 32GB RTX 5090 与 48GB RTX 4090,多场景高并发测试,全面解析 AI 服务器整机性能与显存差异。
运维·服务器·人工智能·科技·深度学习·神经网络·自然语言处理
阿水实证通4 分钟前
能源经济选题推荐:可再生能源转型政策如何提高能源韧性?基于双重机器学习的因果推断
人工智能·机器学习·能源
快秃头的码农16 分钟前
vscode搭建python项目隔离的虚拟环境
ide·vscode·python
掘金安东尼18 分钟前
大模型嵌入浏览器,Atlas 和 Gemini 将带来怎样的变革?
人工智能
mxpan18 分钟前
从 0 到 1:用 Python 对接阿里云 DashScope,轻松实现 AI 对话功能
python·ai编程
亚马逊云开发者22 分钟前
基于Amazon Bedrock的TwelveLabs Marengo Embed 2.7多模态搜索系统
人工智能
Geoking.23 分钟前
深度学习基础:Tensor(张量)的创建方法详解
人工智能·深度学习