机器学习2-简单的二分类问题

需求:

假设现在需要对数据 进行二分类 ,小于0.5的,打上0的标记 ,大于0.5的,打上1的标记,怎么做

分析:

这是一个简单的二分类 问题,使用逻辑回归模型。

代码:

python 复制代码
# 导入所需的库,如需安装:pip install scikit-learn matplotlib
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, confusion_matrix

# 创建一个随机的二分类数据集
np.random.seed(42)
X = np.random.rand(100, 1)
print("X:\n", X)
y = (X > 0.5).astype(int)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
print("X_train:\n", X_train)

# 创建并训练逻辑回归模型
model = LogisticRegression()
model.fit(X_train, y_train)

# 预测测试集
y_pred = model.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy}')

# 可视化决策边界
plt.scatter(X, y, color='blue', marker='o', label='Class 0')
plt.scatter(X_test, y_test, color='red', marker='x', label='Test Data')
plt.xlabel('Feature')
plt.ylabel('Class')
plt.legend()
plt.title('Logistic Regression Decision Boundary')
plt.axhline(0.5, color='green', linestyle='--', linewidth=2, label='Decision Boundary')
plt.show()

运行结果:

如图可见Test Data的标记都是正确的

执行下来的准确率

Accuracy: 1.0

结论: 模型预测使用测试集 (X_test) 进行预测,得到预测值 y_pred,都满足预期

相关推荐
白杆杆红伞伞4 分钟前
10_聚类
机器学习·支持向量机·聚类
Humbunklung13 分钟前
PySide6 GUI 学习笔记——常用类及控件使用方法(多行文本控件QTextEdit)
笔记·python·学习·pyqt
取酒鱼食--【余九】20 分钟前
rl_sar实现sim2real的整体思路
人工智能·笔记·算法·rl_sar
Jamence40 分钟前
多模态大语言模型arxiv论文略读(111)
论文阅读·人工智能·语言模型·自然语言处理·论文笔记
火车叼位42 分钟前
使用 uv 工具在 Windows 系统快速下载安装与切换 Python
python
归去_来兮44 分钟前
图神经网络(GNN)模型的基本原理
大数据·人工智能·深度学习·图神经网络·gnn
爱吃饼干的熊猫1 小时前
PlayDiffusion上线:AI语音编辑进入“无痕时代”
人工智能·语音识别
SelectDB技术团队1 小时前
Apache Doris + MCP:Agent 时代的实时数据分析底座
人工智能·数据挖掘·数据分析·apache·mcp
Leinwin1 小时前
微软推出SQL Server 2025技术预览版,深化人工智能应用集成
人工智能·microsoft