机器学习2-简单的二分类问题

需求:

假设现在需要对数据 进行二分类 ,小于0.5的,打上0的标记 ,大于0.5的,打上1的标记,怎么做

分析:

这是一个简单的二分类 问题,使用逻辑回归模型。

代码:

python 复制代码
# 导入所需的库,如需安装:pip install scikit-learn matplotlib
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, confusion_matrix

# 创建一个随机的二分类数据集
np.random.seed(42)
X = np.random.rand(100, 1)
print("X:\n", X)
y = (X > 0.5).astype(int)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
print("X_train:\n", X_train)

# 创建并训练逻辑回归模型
model = LogisticRegression()
model.fit(X_train, y_train)

# 预测测试集
y_pred = model.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy}')

# 可视化决策边界
plt.scatter(X, y, color='blue', marker='o', label='Class 0')
plt.scatter(X_test, y_test, color='red', marker='x', label='Test Data')
plt.xlabel('Feature')
plt.ylabel('Class')
plt.legend()
plt.title('Logistic Regression Decision Boundary')
plt.axhline(0.5, color='green', linestyle='--', linewidth=2, label='Decision Boundary')
plt.show()

运行结果:

如图可见Test Data的标记都是正确的

执行下来的准确率

Accuracy: 1.0

结论: 模型预测使用测试集 (X_test) 进行预测,得到预测值 y_pred,都满足预期

相关推荐
老蒋新思维几秒前
借刘润之智,在 IP+AI 时代构筑战略 “增长方舟”|创客匠人
大数据·网络·人工智能·网络协议·tcp/ip·创客匠人·知识变现
Juchecar1 分钟前
翻译:与语言无关的编程:为什么你可能仍然需要代码
人工智能
云心雨禅2 分钟前
AI训练成本优化,腾讯云GPU实例选型
人工智能·云计算·腾讯云
聚梦小课堂2 分钟前
2025年11月11日 AI快讯
人工智能·新闻资讯·ai大事件
taxunjishu5 分钟前
Modbus RTU 转 Modbus TCP:借助数据采集提升罗克韦尔PLC工艺参数反馈实时性案例
人工智能·物联网·tcp/ip·工业物联网·工业自动化·总线协议
IT考试认证8 分钟前
微软AI-900考试认证题库
人工智能·microsoft
Mintopia11 分钟前
🧠 可定制化 AIGC:Web 用户个性化模型训练的技术门槛正在塌缩!
前端·人工智能·trae
打码人的日常分享13 分钟前
智慧楼宇资料合集,智慧城市智慧社区智慧园区
大数据·网络·人工智能
PieroPc19 分钟前
一个基于Python Streamlit sqlite3 的销售单管理系统,提供商品管理、客户管理、销售单管理及打印,和应收对账单等功能
python·oracle·sqlite·streamlit
月下倩影时21 分钟前
视觉进阶篇—— PyTorch 安装
人工智能·pytorch·python