机器学习2-简单的二分类问题

需求:

假设现在需要对数据 进行二分类 ,小于0.5的,打上0的标记 ,大于0.5的,打上1的标记,怎么做

分析:

这是一个简单的二分类 问题,使用逻辑回归模型。

代码:

python 复制代码
# 导入所需的库,如需安装:pip install scikit-learn matplotlib
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, confusion_matrix

# 创建一个随机的二分类数据集
np.random.seed(42)
X = np.random.rand(100, 1)
print("X:\n", X)
y = (X > 0.5).astype(int)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
print("X_train:\n", X_train)

# 创建并训练逻辑回归模型
model = LogisticRegression()
model.fit(X_train, y_train)

# 预测测试集
y_pred = model.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy}')

# 可视化决策边界
plt.scatter(X, y, color='blue', marker='o', label='Class 0')
plt.scatter(X_test, y_test, color='red', marker='x', label='Test Data')
plt.xlabel('Feature')
plt.ylabel('Class')
plt.legend()
plt.title('Logistic Regression Decision Boundary')
plt.axhline(0.5, color='green', linestyle='--', linewidth=2, label='Decision Boundary')
plt.show()

运行结果:

如图可见Test Data的标记都是正确的

执行下来的准确率

Accuracy: 1.0

结论: 模型预测使用测试集 (X_test) 进行预测,得到预测值 y_pred,都满足预期

相关推荐
OpenLoong 开源社区6 分钟前
技术视界 | 从哲学到技术:人形机器人感知导航的探索(下篇)
人工智能·机器人·开源社区·人形机器人·openloong
Aerkui10 分钟前
Python数据类型-int
开发语言·python
吉均17 分钟前
如何实现局域网内无痛访问Jupyter Notebook?
ide·python·jupyter
winfredzhang17 分钟前
Python视频标签工具详解:基于wxPython和FFmpeg的实现
python·ffmpeg·音视频·视频标签
csssnxy20 分钟前
叁仟数智指路机器人的主要功能有哪些?
人工智能
这里有鱼汤24 分钟前
你以为 Socket 只能做聊天室?揭秘 Python 网络编程的 8 种硬核用法
前端·后端·python
独行soc32 分钟前
2025年渗透测试面试题总结-某腾某讯-技术安全实习生升级(题目+回答)
java·python·安全·web安全·面试·职场和发展·红蓝攻防
白808036 分钟前
python实现代码雨
开发语言·python·pygame
蝎蟹居37 分钟前
GB/T 4706.1-2024 家用和类似用途电器的安全 第1部分:通用要求 与2005版差异(1)
人工智能·单片机·嵌入式硬件·物联网·安全
小周不摆烂42 分钟前
Python爬虫:开启数据抓取的奇幻之旅(二)
python