机器学习2-简单的二分类问题

需求:

假设现在需要对数据 进行二分类 ,小于0.5的,打上0的标记 ,大于0.5的,打上1的标记,怎么做

分析:

这是一个简单的二分类 问题,使用逻辑回归模型。

代码:

python 复制代码
# 导入所需的库,如需安装:pip install scikit-learn matplotlib
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, confusion_matrix

# 创建一个随机的二分类数据集
np.random.seed(42)
X = np.random.rand(100, 1)
print("X:\n", X)
y = (X > 0.5).astype(int)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
print("X_train:\n", X_train)

# 创建并训练逻辑回归模型
model = LogisticRegression()
model.fit(X_train, y_train)

# 预测测试集
y_pred = model.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy}')

# 可视化决策边界
plt.scatter(X, y, color='blue', marker='o', label='Class 0')
plt.scatter(X_test, y_test, color='red', marker='x', label='Test Data')
plt.xlabel('Feature')
plt.ylabel('Class')
plt.legend()
plt.title('Logistic Regression Decision Boundary')
plt.axhline(0.5, color='green', linestyle='--', linewidth=2, label='Decision Boundary')
plt.show()

运行结果:

如图可见Test Data的标记都是正确的

执行下来的准确率

Accuracy: 1.0

结论: 模型预测使用测试集 (X_test) 进行预测,得到预测值 y_pred,都满足预期

相关推荐
橘猫云计算机设计22 分钟前
基于django优秀少儿图书推荐网(源码+lw+部署文档+讲解),源码可白嫖!
java·spring boot·后端·python·小程序·django·毕业设计
互联网杂货铺28 分钟前
如何用Postman实现自动化测试?
自动化测试·软件测试·python·测试工具·测试用例·接口测试·postman
予安灵35 分钟前
一文详细讲解Python(详细版一篇学会Python基础和网络安全)
开发语言·python
神马行空1 小时前
一文解读DeepSeek大模型在政府工作中具体的场景应用
人工智能·大模型·数字化转型·deepseek·政务应用
合合技术团队1 小时前
实测对比|法国 AI 独角兽公司发布的“最强 OCR”,实测效果如何?
大数据·人工智能·图像识别
冷月半明1 小时前
Python项目打包指南:PyInstaller与SeleniumWire的兼容性挑战及解决方案
python·selenium
冷月半明1 小时前
《Pandas 性能优化:向量化操作 vs. Swifter 加速,谁才是大数据处理的救星?》
python·数据分析·pandas
蒹葭苍苍8731 小时前
LoRA、QLoRA微调与Lama Factory
人工智能·笔记
蹦蹦跳跳真可爱5891 小时前
Python----机器学习(基于PyTorch的线性回归)
人工智能·pytorch·python·机器学习·线性回归
搞不懂语言的程序员2 小时前
装饰器模式详解
开发语言·python·装饰器模式