Python算法题集_最大子数组和

本文为Python算法题集之一的代码示例

题目53:最大子数组和

说明:给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组 是数组中的一个连续部分。

示例 1:

复制代码
输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

示例 2:

复制代码
输入:nums = [1]
输出:1

示例 3:

复制代码
输入:nums = [5,4,-1,7,8]
输出:23

提示:

  • 1 <= nums.length <= 105

  • -104 <= nums[i] <= 104


- 问题分析

  1. 本题为求数组中的子数组的最大和
  2. 主要的计算为2个,1子数组遍历,2子数组求和
  3. 基本的遍历为双层循环,双层循环遍历子数组,每个子数组求和一次,所以基本的时间算法复杂度为(On2)

- 优化思路

  1. 减少循环层次

  2. 减少计算类别

  3. 通过动态规划分析最优路径

    1. 前缀和之差(第1到第n的累加为前缀和,前缀和之间的差为两个元素之间子数组的和)
    2. 递归思路,第n个元素为止的最大和,为之前的最大和max_n与包含元素n的子数组最大和【max(premax+元素n、元素n)】中最大者


  1. 标准求解,双层循环,超时失败

    python 复制代码
    import CheckFuncPerf as cfp
    
    def maxSubArray_base(nums):
        if len(nums) == 1:
            return nums[0]
        imaxsum, ileftsum = nums[0], nums[0]
        for iIdx in range(len(nums)-1):
            ileftsum += nums[iIdx]
            irightsum = 0
            for jIdx in range(iIdx+1, len(nums)):
                irightsum += nums[jIdx]
                if ileftsum > 0:
                    if ileftsum+irightsum > imaxsum:
                        imaxsum = ileftsum+irightsum
                else:
                    if irightsum > imaxsum:
                        imaxsum = irightsum
        return imaxsum
    
    testcase_big = open(r'testcase/hot13_big.txt', mode='r', encoding='utf-8').read().replace('[', '').replace(']', '')
    testcase_big = testcase_big.split(',')
    nums = [int(x) for x in testcase_big]
    result = cfp.getTimeMemoryStr(maxSubArray_base, nums)
    print(result['msg'], '执行结果 = {}'.format(result['result']))
    
    # 运行结果
    函数 maxSubArray_base 的运行时间为 19834.08 ms;内存使用量为 4.00 KB 执行结果 = 1364833
  2. 优化版一【采用前缀和】,虽有想法,超时依旧

    python 复制代码
    import CheckFuncPerf as cfp
    
    def maxSubArray_ext1(nums):
        if len(nums) == 1:
            return nums[0]
        presum = [0] * len(nums)
        isum, imaxsum = 0, nums[0]
        for iIdx in range(len(nums)):
            isum += nums[iIdx]
            presum[iIdx] = isum
        for iIdx in range(len(nums)-1):
            for jIdx in range(iIdx+1, len(nums)):
                imaxsum = max(imaxsum, presum[iIdx], presum[jIdx], presum[jIdx]-presum[iIdx])
        return imaxsum
    
    testcase_big = open(r'testcase/hot13_big.txt', mode='r', encoding='utf-8').read().replace('[', '').replace(']', '')
    testcase_big = testcase_big.split(',')
    nums = [int(x) for x in testcase_big]
    result = cfp.getTimeMemoryStr(maxSubArray_ext1, nums)
    print(result['msg'], '执行结果 = {}'.format(result['result']))
    
    # 运行结果
    函数 maxSubArray_ext1 的运行时间为 15518.62 ms;内存使用量为 144.00 KB 执行结果 = 1364833
  3. 优化版二【滑动窗口,单层循环】,勉强通过,超过27%

    python 复制代码
    import CheckFuncPerf as cfp
    
    def maxSubArray_ext2(nums):
        if len(nums) == 1:
            return nums[0]
        presum = [0] * len(nums)
        isum, imaxsum, iminsum = 0, nums[0], nums[0]
        for iIdx in range(len(nums)):
            isum += nums[iIdx]
            presum[iIdx] = isum
            if iIdx > 0:
                imaxsum = max(imaxsum, isum, isum - iminsum)
            iminsum = min(isum, iminsum)
        return imaxsum
    
    testcase_big = open(r'testcase/hot13_big.txt', mode='r', encoding='utf-8').read().replace('[', '').replace(']', '')
    testcase_big = testcase_big.split(',')
    nums = [int(x) for x in testcase_big]
    result = cfp.getTimeMemoryStr(maxSubArray_ext2, nums)
    print(result['msg'], '执行结果 = {}'.format(result['result']))
    
    # 运行结果
    函数 maxSubArray_ext2 的运行时间为 6.99 ms;内存使用量为 296.00 KB 执行结果 = 1364833
  4. 优化版三【动态规划,递归思路求解】,马马虎虎,超过60%

    python 复制代码
    import CheckFuncPerf as cfp
    
    def maxSubArray_ext3(nums):
        imaxpre, imaxsum = 0, nums[0]
        for iIdx in range(len(nums)):
            imaxpre = max(nums[iIdx], nums[iIdx] + imaxpre)
            imaxsum = max(imaxsum, imaxpre)
        return imaxsum
    
    testcase_big = open(r'testcase/hot13_big.txt', mode='r', encoding='utf-8').read().replace('[', '').replace(']', '')
    testcase_big = testcase_big.split(',')
    nums = [int(x) for x in testcase_big]
    result = cfp.getTimeMemoryStr(maxSubArray_ext3, nums)
    print(result['msg'], '执行结果 = {}'.format(result['result']))
    
    # 运行结果
    函数 maxSubArray_ext3 的运行时间为 5.99 ms;内存使用量为 4.00 KB 执行结果 = 1364833
  5. 优化版四【分支改良】,有所改善,超越83%

    在优化版四的基础上,进行流程分支改良,去掉了一批加法计算

    python 复制代码
    import CheckFuncPerf as cfp
    
    def maxSubArray_ext4(nums):
        imaxpre, imaxsum = 0, nums[0]
        for iIdx in range(len(nums)):
            if imaxpre > 0:
                imaxpre = nums[iIdx] + imaxpre
            else:
                imaxpre = nums[iIdx]
            imaxsum = max(imaxsum, imaxpre)
        return imaxsum
    
    testcase_big = open(r'testcase/hot13_big.txt', mode='r', encoding='utf-8').read().replace('[', '').replace(']', '')
    testcase_big = testcase_big.split(',')
    nums = [int(x) for x in testcase_big]
    result = cfp.getTimeMemoryStr(maxSubArray_ext4, nums)
    print(result['msg'], '执行结果 = {}'.format(result['result']))
    
    # 运行结果
    函数 maxSubArray_ext4 的运行时间为 4.02 ms;内存使用量为 0.00 KB 执行结果 = 1364833

    一日练,一日功,一日不练十日空

    may the odds be ever in your favor ~

相关推荐
随缘而动,随遇而安34 分钟前
第八十八篇 大数据中的递归算法:从俄罗斯套娃到分布式计算的奇妙之旅
大数据·数据结构·算法
郭庆汝1 小时前
pytorch、torchvision与python版本对应关系
人工智能·pytorch·python
IT古董1 小时前
【第二章:机器学习与神经网络概述】03.类算法理论与实践-(3)决策树分类器
神经网络·算法·机器学习
Alfred king4 小时前
面试150 生命游戏
leetcode·游戏·面试·数组
水木兰亭4 小时前
数据结构之——树及树的存储
数据结构·c++·学习·算法
思则变4 小时前
[Pytest] [Part 2]增加 log功能
开发语言·python·pytest
漫谈网络5 小时前
WebSocket 在前后端的完整使用流程
javascript·python·websocket
Jess075 小时前
插入排序的简单介绍
数据结构·算法·排序算法
老一岁5 小时前
选择排序算法详解
数据结构·算法·排序算法
xindafu5 小时前
代码随想录算法训练营第四十二天|动态规划part9
算法·动态规划