在AI场景下,存储架构的选择需要考虑数据的规模、访问模式(读取密集型或写入密集型)、I/O性能要求、数据持久性、扩展性和成本等因素。以下是一些常见的存储架构及其优势:
- 文件系统存储:
-
- NAS (Network Attached Storage):如阿里云NAS等,提供高可用、可扩展的网络文件共享服务,适合于AI训练过程中模型文件和大量非结构化数据的存储需求。优势在于能够实现多节点并行读写,支持大规模数据集的快速访问,并且可以与计算资源分离,灵活扩展。
- 分布式文件系统:
-
- HDFS (Hadoop Distributed File System):专为大数据处理设计,尤其适用于需要大量顺序读写的场景,比如AI训练前的数据预处理阶段。
- GlusterFS、CephFS:这些分布式文件系统提供了高度可扩展性和容错能力,对于PB级甚至EB级数据量的大模型训练数据存储是理想选择,通过分布式的架构保证了高并发读写能力和大容量扩展。
- 对象存储:
-
- S3兼容的对象存储服务(如AWS S3、阿里云OSS等):特别适用于长期保存海量模型版本、训练日志和结果数据,具备近乎无限的扩展性,同时提供了细粒度的访问控制和强大的检索功能,但通常更适合用于冷数据存档和按需访问的场景。
- 高性能并行存储:
-
- Lustre、BeeGFS、GPFS:这类存储系统针对高性能计算环境优化,具有极高的带宽和低延迟特性,适合对AI计算集群进行高速缓存或者临时数据交换,以加速大规模模型训练过程中的I/O速度。
- 存算一体架构:
-
- 存内计算技术结合新型存储介质(例如基于QLC NAND的SSD),使得数据无需经过CPU和内存直接在存储设备上进行运算,从而减少数据传输瓶颈,提高效率,降低功耗,对于边缘计算和特定AI应用中能有效提升性能和寿命。
- 混合存储方案:
-
- AI企业可能采用多种存储组合,如将本地NVMe SSD用作高速缓存层,后端使用分布式文件系统或对象存储作为主存储层。这样既能满足高I/O性能需求,又能在不牺牲总体成本效益的前提下应对PB级别的数据挑战。
- 超大规模云存储解决方案:
-
- 超大规模的AI训练往往依赖于云计算平台提供的存储服务,这些服务整合了上述多种存储技术,可以根据业务需求动态调整存储配置,实现弹性扩容和降本增效。
每种存储架构都有其适用的场景和独特优势,实际选型时应根据具体AI工作负载特征和业务目标来权衡。随着AI大模型时代的到来,存储架构的设计趋势更倾向于高带宽、低延迟、高可靠性和经济高效的解决方案。