U2net:Going deeper with nested u-structure for salient object detection

u2net是目前stable-diffusion-webui默认的抠图算法,但是在电商图场景实测下来,效果是很一般的。

1.introduction

1.能否设计一个新的网络用语SOD,允许从头训练;2.保持高分辨率特征图的同时网络更深。U2net是一种为SOD设计的两级嵌套U结构,不使用图像分类的预训练骨干网络,在底层设计了一种新颖的Residual U-blocks,能够提取多尺度特征而不降低特征图分辨率,在顶层,有一个类似UNET的结构,每个极端都由RSU填充。U2net 176.3M,U2netp 4.7Mb。

2.Proposed method

2.1 Residual U-blocks

局部和全局特征非常重要,大小为1x1或3x3的小型卷积是常用的特征提取组件,浅层的输出特征图仅包含局部特征,因为1x1或3x3卷积的感受野太小,无法捕获全局信息。为了在浅层的高分辨率特征图中获得更多的全局信息,最直接的想法是扩大感受野。

图2中d用了inception结构,通过扩张卷积来扩大感受野,受unet启发,RSU用于捕捉阶内多尺度特征,RSU和残差连结最大的不同在于,RSU使用了一个类似于UNET的结构来替换单一流的普通卷积,并用一个权重层转换的局部特征来代替原始特征。这种设计变化使得网络可以直接从每个残差块中提取多尺度的特征,由于大部分操作是在下采样的特征图上进行的,因此U结构带来的计算开销是很小的。

2.2 Architecture of u2net

U2net是嵌套的unet,不是级联的,是一个2级嵌套结构,其顶层由11个stage组成的大型unet,每个stage是一个RSU,6个阶段的编码器,5个解码器和一个显著图融合模块。

2.3 Supervision

交叉熵监督sup0-6,

python 复制代码
def muti_bce_loss_fusion(d0, d1, d2, d3, d4, d5, d6, labels_v):
    loss0 = bce_loss(d0, labels_v)
    loss1 = bce_loss(d1, labels_v)
    loss2 = bce_loss(d2, labels_v)
    loss3 = bce_loss(d3, labels_v)
    loss4 = bce_loss(d4, labels_v)
    loss5 = bce_loss(d5, labels_v)
    loss6 = bce_loss(d6, labels_v)

    loss = loss0 + loss1 + loss2 + loss3 + loss4 + loss5 + loss6
    # print("l0: %3f, l1: %3f, l2: %3f, l3: %3f, l4: %3f, l5: %3f, l6: %3f\n"%(loss0.data.item(),loss1.data.item(),loss2.data.item(),loss3.data.item(),loss4.data.item(),loss5.data.item(),loss6.data.item()))

    return loss0, loss

4.Experimental results

4.1 Datasets

DUTS-TR:10533张图

相关推荐
叶子2024228 分钟前
守护进程实验——autoDL
人工智能·算法·机器学习
陈奕昆10 分钟前
4.3 HarmonyOS NEXT AI驱动的交互创新:智能助手、实时语音与AR/MR开发实战
人工智能·交互·harmonyos
张较瘦_30 分钟前
[论文阅读] 人工智能 | 用大语言模型抓虫:如何让网络协议实现与RFC规范对齐
论文阅读·人工智能·语言模型
qb_jiajia35 分钟前
微软认证考试科目众多?该如何选择?
人工智能·microsoft·微软·云计算
pen-ai1 小时前
【统计方法】蒙特卡洛
人工智能·机器学习·概率论
说私域1 小时前
基于开源AI智能名片链动2+1模式S2B2C商城小程序的生态农庄留存运营策略研究
人工智能·小程序·开源·零售
摘取一颗天上星️1 小时前
大模型微调技术全景图:从全量更新到参数高效适配
人工智能·深度学习·机器学习
要努力啊啊啊1 小时前
策略梯度核心:Advantage 与 GAE 原理详解
论文阅读·人工智能·深度学习·自然语言处理
AI航海家(Ethan)1 小时前
RAG技术解析:实现高精度大语言模型知识增强
人工智能·语言模型·自然语言处理
soldierluo2 小时前
AI基础知识(LLM、prompt、rag、embedding、rerank、mcp、agent、多模态)
人工智能·prompt·embedding