「深度学习」dropout 技术

一、工作原理

1. 正则化网络

dropout 将遍历网络的每一层,并设置消除神经网络中节点的概率。

    1. 每个节点保留/消除的概率为0.5:
    1. 消除节点:
    1. 得到一个规模更小的神经网络:

2. dropout 技术

最常用:反向随机失活 "Inverted dropout"

以三层网络 (l=3) 为例:

复制代码
keep-prob = 0.8     #保留某个隐藏单元的概率
#生成随机矩阵,每个单元对应值为1的概率是0.8,用于决定第三层哪些元素应该归零
d3 = np.random.rand(a3.shape[0], a3.shape[1]) < keep-prob
#元素相乘,从第三层获取激活函数,过滤d3中所有等于0的元素
a3 = np.multiply(a3,d3)
a3 /= keep-prob   #dropout方法:修正,使得a3期望值不变

Inverted dropout 通过除以 keep-prob,确保激活值的期望值不变,使得测试阶段更加容易。

每次梯度下降归零的隐藏单元可能不一样。

3. 在测试阶段训练算法

  1. 将第0层激活函数标记为测试样本x

    a^{[0]} = x

  1. 在测试阶段不使用 dropout 技术,我们不希望输出结果随机。特别地:

    z^{[1]} = w^{[1]} a^{[0]} +b^{[1]}​

    a^{[1]} = g^{[1]}(z^{[1]})​

    z^{[2]} = w^{[2]} a^{[1]} +b^{[2]}​

    a^{[2]} = g^{[2]}(z^{[2]})​

    ...

    \widehat{y}

    目标:在测试阶段即使不执行 dropout,激活函数的预测结果也不会发生变化

二、理解 dropout

    1. 每次 dropout 会生成一个更小的神经网络。
    1. 收缩权重的平方范数:单元不能依赖任何特征 (该单元的任何特征都有可能被随机清除),故不会给任何一个输入加上过多的权重。
    1. 一般来说,某层的隐藏单元越多,该层的 keep-prob 越小;可以某些层用 dropout,某些层不用。

用途:防止过拟合,常用在输入数据不足的情况 (如计算机视觉)。

缺点:代价函数 J 不再被明确定义,结果难以复查。

三、其他正则化方法

1. 增加训练集

以图片为例,可将图片进行水平翻转/旋转/裁剪/放大/扭曲图片,可扩增算法数据。(但需要人工验证图片经过处理后仍是原物)

2. early stopping

运行梯度下降时,绘制训练误差或代价函数 J 的优化过程 + 验证集的误差

early stopping:在中间点停止迭代过程,即提早停止训练神经网络。

优点:只需要一次梯度下降,就可以找到 w 的较小值、中间值、较大值。

缺点:不能同时进行代价函数 J 的优化和 防止过拟合两个问题的解决。

3. L2 正则化

缺点:神经网络的训练时间更长,需要尝试很多次正则化参数 \lambda 的值,计算代价高。

相关推荐
水如烟7 小时前
孤能子视角:“组织行为学–组织文化“
人工智能
大山同学7 小时前
图片补全-Context Encoder
人工智能·机器学习·计算机视觉
薛定谔的猫19827 小时前
十七、用 GPT2 中文对联模型实现经典上联自动对下联:
人工智能·深度学习·gpt2·大模型 训练 调优
壮Sir不壮7 小时前
2026年奇点:Clawdbot引爆个人AI代理
人工智能·ai·大模型·claude·clawdbot·moltbot·openclaw
PaperRed ai写作降重助手7 小时前
高性价比 AI 论文写作软件推荐:2026 年预算友好型
人工智能·aigc·论文·写作·ai写作·智能降重
玉梅小洋7 小时前
Claude Code 从入门到精通(七):Sub Agent 与 Skill 终极PK
人工智能·ai·大模型·ai编程·claude·ai工具
-嘟囔着拯救世界-7 小时前
【保姆级教程】Win11 下从零部署 Claude Code:本地环境配置 + VSCode 可视化界面全流程指南
人工智能·vscode·ai·编辑器·html5·ai编程·claude code
正见TrueView7 小时前
程一笑的价值选择:AI金玉其外,“收割”老人败絮其中
人工智能
Imm7778 小时前
中国知名的车膜品牌推荐几家
人工智能·python
风静如云8 小时前
Claude Code:进入dash模式
人工智能