huggingface学习|用dreambooth和lora对stable diffusion模型进行微调

目录


用dreambooth对stable-diffusion-v1-5模型进行微调

(一)模型下载和环境配置

  1. 准备好需要微调的模型如stable-diffusion-v1-5模型
  2. 下载diffusers模型并进入diffusers文件夹下载相关包
python 复制代码
git clone https://github.com/huggingface/diffusers
cd diffusers
pip install .
  1. 进入dreambooth文件夹下载相关包
python 复制代码
cd examples/dreambooth
pip install -r requirements.txt

(二)数据集准备

官方样例提供的数据为五张小狗照片,下载完毕后放入任意一个文件夹即可
如果是自己的数据集,准备好图片后放入一个指定文件夹即可

(三)模型微调

  1. 加速器默认配置
python 复制代码
accelerate config default
  1. 运行train_dreambooth文件
python 复制代码
accelerate launch train_dreambooth.py \
  --pretrained_model_name_or_path="./stable-diffusion-v1-5"  \
  --instance_data_dir="./image_data" \
  --output_dir="./outputs" \
  --instance_prompt="a photo of a sks dog" \
  --resolution=512 \
  --train_batch_size=1 \
  --gradient_accumulation_steps=1 \
  --learning_rate=5e-6 \
  --lr_scheduler="constant" \
  --lr_warmup_steps=0 \
  --max_train_steps=400 

--pretrained_model_name_or_path:Hub 上模型的名称或预训练模型的本地路径

--instance_data_dir:包含训练数据集的文件夹的路径(示例图像)

--instance_prompt:包含示例图像的特殊单词的文本提示

--train_text_encoder:是否也训练文本编码器

--output_dir:训练好的模型保存在哪里

--push_to_hub:是否将训练好的模型推送到Hub

--checkpointing_steps:模型训练时保存检查点的频率;如果由于某种原因训练被中断,这很有用,您可以通过添加--resume_from_checkpoint到训练命令来从该检查点继续训练

(四)运行微调后的模型

新建一个python文件(如取名为train),保存以下代码,将对应的模型路径、prompt内容和图片名进行修改即可。

python 复制代码
from diffusers import DiffusionPipeline
import torch

pipeline = DiffusionPipeline.from_pretrained("path_to_saved_model", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
image = pipeline("A photo of sks dog in a bucket", num_inference_steps=50, guidance_scale=7.5).images[0]
image.save("dog-bucket.png")

运行上述python文件

python 复制代码
python train.py

最终结果为:

用lora对stable-diffusion-v1-5模型进行微调

(一)模型下载和环境配置

  1. 准备好需要微调的模型如stable-diffusion-v1-5模型
  2. 下载diffusers模型并进入diffusers文件夹下载相关包
python 复制代码
git clone https://github.com/huggingface/diffusers
cd diffusers
pip install .
  1. 进入text_to_image文件夹下载相关包
python 复制代码
cd examples/text_to_image
pip install -r requirements.txt

(二)数据集准备

官方样例提供的数据为pokemon-blip-captions图,下载完毕后放入任意一个文件夹即可

如果是自己的数据集,则需要在数据文件夹下放入相关图片和一个名为metadata.jsonl的文件(可以通过txt文件输入相关内容后修改后缀名即可),其中metadata.jsonl文件中的内容为图像名和对应的提示文本:

(三)模型微调

  1. 加速器默认配置
python 复制代码
accelerate config default
  1. 运行text_to_image_lora.py文件
python 复制代码
accelerate launch train_text_to_image_lora.py \
  --pretrained_model_name_or_path="../dreambooth/stable-diffusion-v1-5" \
  --dataset_name="./pokemon-blip-captions" \
  --dataloader_num_workers=8 \
  --resolution=512 \
  --center_crop \
  --random_flip \
  --train_batch_size=1 \
  --gradient_accumulation_steps=4 \
  --max_train_steps=15000 \
  --learning_rate=1e-04 \
  --max_grad_norm=1 \
  --lr_scheduler="cosine" \
  --lr_warmup_steps=0 \
  --output_dir="./output" \
  --hub_model_id="pokemon-lora" \
  --checkpointing_steps=500 \
  --validation_prompt="A pokemon with blue eyes." \
  --seed=1337

(四)运行微调后的模型

新建一个python文件(如取名为train),保存以下代码,将对应的模型路径、prompt内容和图片名进行修改即可。

python 复制代码
from diffusers import AutoPipelineForText2Image
import torch

pipeline = AutoPipelineForText2Image.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16).to("cuda")
pipeline.load_lora_weights("path/to/lora/model", weight_name="pytorch_lora_weights.safetensors")
image = pipeline("A pokemon with blue eyes").images[0]
image.save("pokemon.png")

运行上述python文件

python 复制代码
python train.py

最终结果为:

参考:
huggingface dreambooth
huggingface lora

相关推荐
qunaa01014 分钟前
钻井作业场景下设备与产品识别与检测:基于YOLO11-SRFD的目标检测系统实现与应用
人工智能·目标检测·计算机视觉
AI前言观察者4 分钟前
2026年工作简历怎么写?
人工智能·经验分享·面试·职场和发展·求职招聘
Guheyunyi7 分钟前
智慧消防管理平台的关键技术突破与创新
大数据·运维·人工智能·安全·音视频
PEARL的AI指南10 分钟前
智启AI零售营销实践:案例复盘与效果分享
人工智能·零售
杀生丸学AI11 分钟前
【视频生成】HY-World 1.5:实时延迟和几何一致的交互式世界模型系统(腾讯混元)
人工智能·深度学习·3d·音视频·transformer·三维重建
sin_hielo12 分钟前
leetcode 2975
数据结构·算法·leetcode
java修仙传15 分钟前
力扣hot100:跳跃游戏
算法·leetcode·游戏
人工智能培训18 分钟前
AIGC技术与进展(2)
人工智能·深度学习·机器学习·大模型·aigc·ai工程师证书·ai证书
汉克老师20 分钟前
GESP2025年9月认证C++三级真题与解析(单选题9-15)
c++·算法·数组·string·字符数组·gesp三级·gesp3级
发疯幼稚鬼23 分钟前
简单介绍各类算法
算法