huggingface学习|用dreambooth和lora对stable diffusion模型进行微调

目录


用dreambooth对stable-diffusion-v1-5模型进行微调

(一)模型下载和环境配置

  1. 准备好需要微调的模型如stable-diffusion-v1-5模型
  2. 下载diffusers模型并进入diffusers文件夹下载相关包
python 复制代码
git clone https://github.com/huggingface/diffusers
cd diffusers
pip install .
  1. 进入dreambooth文件夹下载相关包
python 复制代码
cd examples/dreambooth
pip install -r requirements.txt

(二)数据集准备

官方样例提供的数据为五张小狗照片,下载完毕后放入任意一个文件夹即可
如果是自己的数据集,准备好图片后放入一个指定文件夹即可

(三)模型微调

  1. 加速器默认配置
python 复制代码
accelerate config default
  1. 运行train_dreambooth文件
python 复制代码
accelerate launch train_dreambooth.py \
  --pretrained_model_name_or_path="./stable-diffusion-v1-5"  \
  --instance_data_dir="./image_data" \
  --output_dir="./outputs" \
  --instance_prompt="a photo of a sks dog" \
  --resolution=512 \
  --train_batch_size=1 \
  --gradient_accumulation_steps=1 \
  --learning_rate=5e-6 \
  --lr_scheduler="constant" \
  --lr_warmup_steps=0 \
  --max_train_steps=400 

--pretrained_model_name_or_path:Hub 上模型的名称或预训练模型的本地路径

--instance_data_dir:包含训练数据集的文件夹的路径(示例图像)

--instance_prompt:包含示例图像的特殊单词的文本提示

--train_text_encoder:是否也训练文本编码器

--output_dir:训练好的模型保存在哪里

--push_to_hub:是否将训练好的模型推送到Hub

--checkpointing_steps:模型训练时保存检查点的频率;如果由于某种原因训练被中断,这很有用,您可以通过添加--resume_from_checkpoint到训练命令来从该检查点继续训练

(四)运行微调后的模型

新建一个python文件(如取名为train),保存以下代码,将对应的模型路径、prompt内容和图片名进行修改即可。

python 复制代码
from diffusers import DiffusionPipeline
import torch

pipeline = DiffusionPipeline.from_pretrained("path_to_saved_model", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
image = pipeline("A photo of sks dog in a bucket", num_inference_steps=50, guidance_scale=7.5).images[0]
image.save("dog-bucket.png")

运行上述python文件

python 复制代码
python train.py

最终结果为:

用lora对stable-diffusion-v1-5模型进行微调

(一)模型下载和环境配置

  1. 准备好需要微调的模型如stable-diffusion-v1-5模型
  2. 下载diffusers模型并进入diffusers文件夹下载相关包
python 复制代码
git clone https://github.com/huggingface/diffusers
cd diffusers
pip install .
  1. 进入text_to_image文件夹下载相关包
python 复制代码
cd examples/text_to_image
pip install -r requirements.txt

(二)数据集准备

官方样例提供的数据为pokemon-blip-captions图,下载完毕后放入任意一个文件夹即可

如果是自己的数据集,则需要在数据文件夹下放入相关图片和一个名为metadata.jsonl的文件(可以通过txt文件输入相关内容后修改后缀名即可),其中metadata.jsonl文件中的内容为图像名和对应的提示文本:

(三)模型微调

  1. 加速器默认配置
python 复制代码
accelerate config default
  1. 运行text_to_image_lora.py文件
python 复制代码
accelerate launch train_text_to_image_lora.py \
  --pretrained_model_name_or_path="../dreambooth/stable-diffusion-v1-5" \
  --dataset_name="./pokemon-blip-captions" \
  --dataloader_num_workers=8 \
  --resolution=512 \
  --center_crop \
  --random_flip \
  --train_batch_size=1 \
  --gradient_accumulation_steps=4 \
  --max_train_steps=15000 \
  --learning_rate=1e-04 \
  --max_grad_norm=1 \
  --lr_scheduler="cosine" \
  --lr_warmup_steps=0 \
  --output_dir="./output" \
  --hub_model_id="pokemon-lora" \
  --checkpointing_steps=500 \
  --validation_prompt="A pokemon with blue eyes." \
  --seed=1337

(四)运行微调后的模型

新建一个python文件(如取名为train),保存以下代码,将对应的模型路径、prompt内容和图片名进行修改即可。

python 复制代码
from diffusers import AutoPipelineForText2Image
import torch

pipeline = AutoPipelineForText2Image.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16).to("cuda")
pipeline.load_lora_weights("path/to/lora/model", weight_name="pytorch_lora_weights.safetensors")
image = pipeline("A pokemon with blue eyes").images[0]
image.save("pokemon.png")

运行上述python文件

python 复制代码
python train.py

最终结果为:

参考:
huggingface dreambooth
huggingface lora

相关推荐
mwq301231 分钟前
Transformer:多头自注意力机制详解 (PyTorch 实现)
人工智能
西柚小萌新3 分钟前
【深入浅出PyTorch】--7.2.PyTorch可视化2
人工智能·pytorch·python
Nix Lockhart5 分钟前
《算法与数据结构》第七章[算法4]:最短路径
c语言·数据结构·学习·算法·图论
Psycho_MrZhang11 分钟前
机器学习使用GPU
人工智能·机器学习
用户51914958484517 分钟前
利用配置错误的IAM策略窃取云函数访问令牌[GCP]
人工智能·aigc
中杯可乐多加冰17 分钟前
国产OCR模型荣登HF榜首——PaddleOCR-VL技术详解与多场景实测
人工智能
王国强200918 分钟前
人工智能发展报告:技术进展与产业分析(Kimi生成)
人工智能
算家计算19 分钟前
阿里最新开源!轻量级视觉模型Qwen3-VL-4B&8B-Instruct本地部署教程:小参数媲美顶尖模型
人工智能·开源
赋范大模型技术圈21 分钟前
11G显存DPO强化学习微调实战
人工智能·强化学习
算家计算27 分钟前
李飞飞最新成果RTFM世界模型震撼问世,单块GPU就能跑
人工智能·资讯