C++ dfs搜索枚举(四十九)【第九篇】

今天我们接着来学习dfs(枚举)

1.枚举排列

在之前的搜索枚举中,我们并没有考虑选入物品的 排列顺序。但在一些题目中,会要求考虑给定数字或物品的排列,这种排列可以是在

n 个中的所有符合要求的全排列,也可以是在

n 中找到长度为 k 的排列。

如果使用我们之前的搜索枚举方法,我们发现难以用参数标记原数组中数字的选取情况,那么我们就需要一个全局的布尔数组,帮助我们标记哪些数字已经被选入了排列。另一方面,由于我们使用了这样的全局标记数组,那么必然在搜索时使用到 回溯 技巧,在这个分支的搜索结束后,将标记数组还原。

若要输出 n 个数字全排列,在 dfs 数组中需要的参数需要包含已经选入的数字,在选取当前位数字后进行搜索后,要注意进行回溯

cpp 复制代码
int n;
int per[N];
bool vis[N];
void dfs (int dep) {
    if (dep == n) {
        for (int i = 0; i < n; i++) {
            cout << per[i] << " ";
        }
        cout << endl;
        return;
    }
    for (int i = 1; i <= n; i++) {
        if(vis[i]) {
            continue;
        }
        vis[i] = true;
        per[dep] = i;
        dfs(dep + 1);
        vis[i] = false;
}

如果想要输出 n 个数字的 k 排列,我们可以在之前代码上进行一些较小的修改。当我们选取到 k 个数字时就应该停止继续搜索枚举的过程。

cpp 复制代码
int n;
int per[N];
bool vis[N];
void dfs (int dep) {
    if (dep == k) {
        for (int i = 0; i < k; i++) {
            cout << per[i] << " ";
        }
        cout << endl;
        return;
    }
    
    for (int i = 1; i <= n; i++) {
        if(vis[i]) {
            continue;
        }
        vis[i] = true;
        per[dep] = i;
        dfs(dep + 1);
        vis[i] = false;
    }
}
相关推荐
一匹电信狗5 小时前
【LeetCode_547_990】并查集的应用——省份数量 + 等式方程的可满足性
c++·算法·leetcode·职场和发展·stl
鱼跃鹰飞6 小时前
Leetcode会员尊享100题:270.最接近的二叉树值
数据结构·算法·leetcode
梵刹古音7 小时前
【C语言】 函数基础与定义
c语言·开发语言·算法
筵陌7 小时前
算法:模拟
算法
We་ct7 小时前
LeetCode 205. 同构字符串:解题思路+代码优化全解析
前端·算法·leetcode·typescript
renhongxia18 小时前
AI算法实战:逻辑回归在风控场景中的应用
人工智能·深度学习·算法·机器学习·信息可视化·语言模型·逻辑回归
CoderCodingNo8 小时前
【GESP】C++四级/五级练习题 luogu-P1223 排队接水
开发语言·c++·算法
民乐团扒谱机8 小时前
【AI笔记】精密光时频传递技术核心内容总结
人工智能·算法·光学频率梳
CoderCodingNo8 小时前
【GESP】C++五级/四级练习题 luogu-P1413 坚果保龄球
开发语言·c++·算法
2301_822366359 小时前
C++中的命令模式变体
开发语言·c++·算法