LLM大语言模型(六):RAG模式下基于PostgreSQL pgvector插件实现vector向量相似性检索

目录

HightLight

使用PostgreSQL来存储和检索vector,在数据规模非庞大的情况下,简单高效。

可以和在线业务共用一套DB,减少其他组件的引入,降低复杂度,在业务初期可以极大的提升效率。

Mac上安装PostgreSQL

强烈建议使用Postgres.app模式安装

下载最新版(我下载的是16,已包含pgvector插件)
https://postgresapp.com/downloads.html

图形界面安装,很简单

一定要"Initialize"

bash 复制代码
Installing Postgres.app
Download   ➜   Move to Applications folder   ➜   Double Click

If you don't move Postgres.app to the Applications folder, some features may not work (more info)

Click "Initialize" to create a new server

Configure your $PATH to use the included command line tools (optional):

sudo mkdir -p /etc/paths.d &&
echo /Applications/Postgres.app/Contents/Versions/latest/bin | sudo tee /etc/paths.d/postgresapp

DBever图形界面管理端

创建DB

创建mydb

使用向量检索

SQL 复制代码
# 在mydb里启用pgvector插件
CREATE EXTENSION vector;

# 创建一张表items,其中的embedding字段是vector类型
CREATE TABLE items (id bigserial PRIMARY KEY, embedding vector(3));

# 添加数据
INSERT INTO items (embedding) VALUES ('[1,2,3]'), ('[4,5,6]');

# 相似性检索
SELECT * FROM items ORDER BY embedding <-> '[3,1,2]' LIMIT 5;

vector相似度计算

符号 相似度计算
<-> L2距离
<=> cosine距离
<#> inner product点积距离

近似近邻索引

默认情况下pgvector提供的是精确近邻检索,也即全量计算找近邻,召回精准,但计算性能差。

pgvector还提供了两种近似近邻索引:

  1. HNSW - added in 0.5.0
  2. IVFFlat

HNSW近似近邻索引示例

sql 复制代码
# Add an index for each distance function you want to use.

# 创建L2 distance的hnsw近似近邻索引

CREATE INDEX ON items USING hnsw (embedding vector_l2_ops);

# 创建Inner product distance的hnsw近似近邻索引

CREATE INDEX ON items USING hnsw (embedding vector_ip_ops);

# 创建Cosine distance的hnsw近似近邻索引

CREATE INDEX ON items USING hnsw (embedding vector_cosine_ops);

2000维以内都可以索引。

Vectors with up to 2,000 dimensions can be indexed.

具体使用哪种近似近邻索引,根据具体业务来测试。

相关推荐
得贤招聘官5 小时前
精准招聘新纪元:AI 重构选才逻辑
人工智能
ChatPPT_YOO6 小时前
智能演示时代:8款免费AI PPT生成工具全面评测
人工智能·powerpoint·ai生成ppt·ppt制作
却道天凉_好个秋6 小时前
OpenCV(二十一):图像的放大与缩小
人工智能·opencv·计算机视觉
风暴之零6 小时前
卡尔曼滤波学习
人工智能·学习·机器学习
DatGuy7 小时前
Week 24: 深度学习补遗:Vision Transformer (ViT) 复现
人工智能·深度学习·transformer
A尘埃7 小时前
项目三:信息抽取与图谱问答(医疗科研文献知识图谱与智能问答平台)
人工智能·windows·知识图谱
鹿鸣悠悠7 小时前
AI测试(含大模型)与普通测试的区别及实施方法
人工智能
闲看云起7 小时前
一文了解RoPE(旋转位置编码)
人工智能·语言模型·自然语言处理
whaosoft-1437 小时前
51c视觉~合集50
人工智能
金紫火7 小时前
美团CatPaw:一款AI驱动的编程工具解析
人工智能