LLM大语言模型(六):RAG模式下基于PostgreSQL pgvector插件实现vector向量相似性检索

目录

HightLight

使用PostgreSQL来存储和检索vector,在数据规模非庞大的情况下,简单高效。

可以和在线业务共用一套DB,减少其他组件的引入,降低复杂度,在业务初期可以极大的提升效率。

Mac上安装PostgreSQL

强烈建议使用Postgres.app模式安装

下载最新版(我下载的是16,已包含pgvector插件)
https://postgresapp.com/downloads.html

图形界面安装,很简单

一定要"Initialize"

bash 复制代码
Installing Postgres.app
Download   ➜   Move to Applications folder   ➜   Double Click

If you don't move Postgres.app to the Applications folder, some features may not work (more info)

Click "Initialize" to create a new server

Configure your $PATH to use the included command line tools (optional):

sudo mkdir -p /etc/paths.d &&
echo /Applications/Postgres.app/Contents/Versions/latest/bin | sudo tee /etc/paths.d/postgresapp

DBever图形界面管理端

创建DB

创建mydb

使用向量检索

SQL 复制代码
# 在mydb里启用pgvector插件
CREATE EXTENSION vector;

# 创建一张表items,其中的embedding字段是vector类型
CREATE TABLE items (id bigserial PRIMARY KEY, embedding vector(3));

# 添加数据
INSERT INTO items (embedding) VALUES ('[1,2,3]'), ('[4,5,6]');

# 相似性检索
SELECT * FROM items ORDER BY embedding <-> '[3,1,2]' LIMIT 5;

vector相似度计算

符号 相似度计算
<-> L2距离
<=> cosine距离
<#> inner product点积距离

近似近邻索引

默认情况下pgvector提供的是精确近邻检索,也即全量计算找近邻,召回精准,但计算性能差。

pgvector还提供了两种近似近邻索引:

  1. HNSW - added in 0.5.0
  2. IVFFlat

HNSW近似近邻索引示例

sql 复制代码
# Add an index for each distance function you want to use.

# 创建L2 distance的hnsw近似近邻索引

CREATE INDEX ON items USING hnsw (embedding vector_l2_ops);

# 创建Inner product distance的hnsw近似近邻索引

CREATE INDEX ON items USING hnsw (embedding vector_ip_ops);

# 创建Cosine distance的hnsw近似近邻索引

CREATE INDEX ON items USING hnsw (embedding vector_cosine_ops);

2000维以内都可以索引。

Vectors with up to 2,000 dimensions can be indexed.

具体使用哪种近似近邻索引,根据具体业务来测试。

相关推荐
Channing Lewis8 分钟前
如果科技足够发达,是否还需要维持自然系统(例如生物多样性)中那种‘冗余’和‘多样性’,还是可以只保留最优解?
大数据·人工智能·科技
禺垣8 分钟前
区块链技术概述
大数据·人工智能·分布式·物联网·去中心化·区块链
IT科技那点事儿17 分钟前
引领AI安全新时代 Accelerate 2025北亚巡展·北京站成功举办
人工智能·安全
新智元25 分钟前
美 IT 业裁员狂飙 35%,「硅谷梦」彻底崩塌!打工人怒喷 PIP
人工智能·openai
新智元27 分钟前
乔布斯挚友去世!胰腺癌再夺硅谷天才,曾写下苹果「创世代码」
人工智能·openai
春末的南方城市30 分钟前
中山大学&美团&港科大提出首个音频驱动多人对话视频生成MultiTalk,输入一个音频和提示,即可生成对应唇部、音频交互视频。
人工智能·python·深度学习·计算机视觉·transformer
春末的南方城市33 分钟前
Ctrl-Crash 助力交通安全:可控生成逼真车祸视频,防患于未然
人工智能·计算机视觉·自然语言处理·aigc·音视频
程序边界39 分钟前
全球人工智能技术大会(GAITC 2025):技术前沿与产业融合的深度交响
人工智能
OpenCSG1 小时前
电子行业AI赋能软件开发经典案例——某金融软件公司
人工智能·算法·金融·开源
新加坡内哥谈技术1 小时前
极客时间:在 Google Colab 上尝试 Prefix Tuning
人工智能