LLM大语言模型(六):RAG模式下基于PostgreSQL pgvector插件实现vector向量相似性检索

目录

HightLight

使用PostgreSQL来存储和检索vector,在数据规模非庞大的情况下,简单高效。

可以和在线业务共用一套DB,减少其他组件的引入,降低复杂度,在业务初期可以极大的提升效率。

Mac上安装PostgreSQL

强烈建议使用Postgres.app模式安装

下载最新版(我下载的是16,已包含pgvector插件)
https://postgresapp.com/downloads.html

图形界面安装,很简单

一定要"Initialize"

bash 复制代码
Installing Postgres.app
Download   ➜   Move to Applications folder   ➜   Double Click

If you don't move Postgres.app to the Applications folder, some features may not work (more info)

Click "Initialize" to create a new server

Configure your $PATH to use the included command line tools (optional):

sudo mkdir -p /etc/paths.d &&
echo /Applications/Postgres.app/Contents/Versions/latest/bin | sudo tee /etc/paths.d/postgresapp

DBever图形界面管理端

创建DB

创建mydb

使用向量检索

SQL 复制代码
# 在mydb里启用pgvector插件
CREATE EXTENSION vector;

# 创建一张表items,其中的embedding字段是vector类型
CREATE TABLE items (id bigserial PRIMARY KEY, embedding vector(3));

# 添加数据
INSERT INTO items (embedding) VALUES ('[1,2,3]'), ('[4,5,6]');

# 相似性检索
SELECT * FROM items ORDER BY embedding <-> '[3,1,2]' LIMIT 5;

vector相似度计算

符号 相似度计算
<-> L2距离
<=> cosine距离
<#> inner product点积距离

近似近邻索引

默认情况下pgvector提供的是精确近邻检索,也即全量计算找近邻,召回精准,但计算性能差。

pgvector还提供了两种近似近邻索引:

  1. HNSW - added in 0.5.0
  2. IVFFlat

HNSW近似近邻索引示例

sql 复制代码
# Add an index for each distance function you want to use.

# 创建L2 distance的hnsw近似近邻索引

CREATE INDEX ON items USING hnsw (embedding vector_l2_ops);

# 创建Inner product distance的hnsw近似近邻索引

CREATE INDEX ON items USING hnsw (embedding vector_ip_ops);

# 创建Cosine distance的hnsw近似近邻索引

CREATE INDEX ON items USING hnsw (embedding vector_cosine_ops);

2000维以内都可以索引。

Vectors with up to 2,000 dimensions can be indexed.

具体使用哪种近似近邻索引,根据具体业务来测试。

相关推荐
龙的爹2333几秒前
论文翻译 | The Capacity for Moral Self-Correction in Large Language Models
人工智能·深度学习·算法·机器学习·语言模型·自然语言处理·prompt
python_知世28 分钟前
2024年中国金融大模型产业发展洞察报告(附完整PDF下载)
人工智能·自然语言处理·金融·llm·计算机技术·大模型微调·大模型研究报告
Fanstay9851 小时前
人工智能技术的应用前景及其对生活和工作方式的影响
人工智能·生活
lunch( ̄︶ ̄)1 小时前
《AI 使生活更美好》
人工智能·生活
Hoper.J1 小时前
用两行命令快速搭建深度学习环境(Docker/torch2.5.1+cu118/命令行美化+插件),包含完整的 Docker 安装步骤
人工智能·深度学习·docker
夏小花花1 小时前
postgresql 创建序列
数据库·postgresql
Shaidou_Data1 小时前
信息技术引领未来:大数据治理的实践与挑战
大数据·人工智能·数据清洗·信息技术·数据治理技术
Elastic 中国社区官方博客1 小时前
开始使用 Elastic AI Assistant 进行可观察性和 Microsoft Azure OpenAI
大数据·人工智能·elasticsearch·microsoft·搜索引擎·全文检索·azure
qq_273900231 小时前
pytorch detach方法介绍
人工智能·pytorch·python
AI狂热爱好者2 小时前
A3超级计算机虚拟机,为大型语言模型LLM和AIGC提供强大算力支持
服务器·人工智能·ai·gpu算力