PySpark(三)RDD持久化、共享变量、Spark内核制度,Spark Shuffle、Spark执行流程

目录

RDD持久化

[RDD 的数据是过程数据](#RDD 的数据是过程数据)

[RDD 缓存](#RDD 缓存)

[RDD CheckPoint](#RDD CheckPoint)

共享变量

广播变量

累加器

[Spark 内核调度](#Spark 内核调度)

DAG

[DAG 的宽窄依赖和阶段划分](#DAG 的宽窄依赖和阶段划分)

内存迭代计算

[Spark是怎么做内存计算的? DAG的作用?Stage阶段划分的作用?](#Spark是怎么做内存计算的? DAG的作用?Stage阶段划分的作用?)

Spark为什么比MapReduce快?

Spark并行度

[Spark Shuffle](#Spark Shuffle)

[Hash Shuffle](#Hash Shuffle)

[Sort Shuffle](#Sort Shuffle)

Spark执行流程


RDD持久化

RDD 的数据是过程数据

RDD之间进行相互迭代计算(Transformation的转换),当执行开启后,新RDD的生成,代表老RDD的消失

RDD的数据是过程数据,只在处理的过程中存在,一旦处理完成,就不见了
这个特性可以最大化的利用资源,老旧RDD没用了 就从内存中清理,给后续的计算腾出内存空间.

例如下面这个例子,生成rdd4的时候, rdd3已经被销毁了,然后下面rdd5需要调用rdd3的时候,只能从rdd->rdd2->rdd3再重新生成一次rdd3

python 复制代码
    rdd = sc.parallelize([('a',1),('a',3),('a',6),('b',1),('b',2),('c',1)],3)
    rdd2 = rdd.map(lambda x:(x[0],x[1]+2))
    rdd3 = rdd2.distinct()
    rdd4 = rdd3.filter(lambda x:x[1]>5)
    print(rdd4.collect())
    # [('a', 8)]

    rdd5 = rdd3.glom()
    print(rdd5.collect())
    # [[('a', 5), ('a', 8)], [('a', 3), ('b', 4)], [('b', 3), ('c', 3)]]

RDD 缓存

RDD的缓存技术:Spark提供了缓存AP1,可以让我们通过调用AP1,将指定的RDD数据保留在内存或者硬盘上缓存的API

最开始要引入:from pyspark.storagelevel import StorageLevel

缓存技术可以将过程RDD数据,持久化保存到内存或者硬盘上

但是,这个保存在设定上是认为不安全的 ,缓存的数据在设计上是 认为 有丢失风险的

所以,缓存有一个特点就是: 其保留RDD之间的血缘(依赖)关系

一旦缓存丢失可以基于血缘关系的记录重新计算这个RDD的数据
缓存如何丢失:

在内存中的缓存是不安全的,比如断电计算任务内存不足把缓存清理给计算让路

硬盘中因为硬盘损坏也是可能丢失的

RDD缓存采用的是分散存储,也就是每一个executor都会将其处理的部分RDD存放在自己的内存或硬盘中

RDD CheckPoint

CheckPoint技术也是将RDD的数据保存起来,但是它仅支持硬盘存储

并且:它被设计认为是安全的,不保留 血缘关系

checkPoint存储RDD数据,是集中收集各个分区数据进行存储而缓存是分散存储,也就是说先将executor中的数据收集起来(比如收集到hdfs),然后再进行存储

缓存和CheckPoint的对比

  • CheckPoint不管分区数量多少,风险是一样的,缓存分区越多,风险越高
  • CheckPoint支持写入HDFS,缓存不行HDFS是高可靠存储,checkPoint被认为是安全的.
  • checkPoint不支持内存缓存可以缓存如果写内存性能比checkPoint要好一些
  • CheckPoint因为设计认为是安全的,所以不保留血缘关系,而缓存因为设计上认为不安全,所以保留
python 复制代码
    sc.setCheckpointDir("hdfs://node1:8020/checkpoint")
    #设置存储位置
    rdd = sc.parallelize([('a',1),('a',3),('a',6),('b',1),('b',2),('c',1)],3)
    rdd2 = rdd.map(lambda x:(x[0],x[1]+2))
    rdd3 = rdd2.distinct()
    rdd3.checkpoint()

共享变量

广播变量

假如有下面一个场景,需要根据stu_ifo将score_ifo中的数字替换为名字,注意这里是本地数据stu_ifo与RDD数据联合处理

python 复制代码
    stu_ifo = [(1,'lmx'),(2,'lby'),(3,'lxl')]

    score_ifo = sc.parallelize([
        (1,'math',100),
        (2,'english',87),
        (1,'english',80),
        (3,'chinese',98),
        (2, 'chinese', 68),
        (1, 'chinese', 88)]
    )
    def func(data):
        for i in stu_ifo:
            if data[0] == i[0]:
                return (i[1],data[1],data[2])

    get = score_ifo.map(func)
    print(get.collect())

一般情况下, 如果一个executor里面有多个分区的情况,那么每个分区都要向driver申请一份本地数据,然而由于executor内部的数据是共享的,这样就会多申请了一份stu_ifo

只需要将stu_ifo标记为广播变量,就可以解决这个问题。只会向一个executor发送一次数据

只需要在之前声明:

python 复制代码
stu_if_breadcast = sc.broadcast(stu_ifo)

然后使用的时候:

python 复制代码
stu_if_breadcast.value

使用这个方法,可以节省IO次数以及executor内存

上述代码变为:

python 复制代码
    stu_ifo = [(1,'lmx'),(2,'lby'),(3,'lxl')]
    stu_if_breadcast = sc.broadcast(stu_ifo)
    score_ifo = sc.parallelize([
        (1,'math',100),
        (2,'english',87),
        (1,'english',80),
        (3,'chinese',98),
        (2, 'chinese', 68),
        (1, 'chinese', 88)]
    )
    def func(data):
        for i in stu_if_breadcast.value:
            if data[0] == i[0]:
                return (i[1],data[1],data[2])

    get = score_ifo.map(func)
    print(get.collect())

累加器

针对下面这种场景,我希望每map一次,我的num加1:

python 复制代码
    rdd = sc.parallelize([1,2,3,4,5,6,7,8,9,10],2)
    def countt(data):
        global num
        num+=1
        print(num)
        return data

    print(rdd.map(countt).collect())
    print(num)
    # 1
    # 2
    # 3
    # 4
    # 5
    # 1
    # 2
    # 3
    # 4
    # 5
    # [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
    # 0

观察结果,由于分区的情况,在每个executor内num都加到了5,但是最后的num却还是0

因为加1操作只会发生在 executor 中,而最后打印的是driver中的num,所以还是0

这里可以使用spark的累加器变量:

python 复制代码
    num = sc.accumulator(0) #累加器
    rdd = sc.parallelize([1,2,3,4,5,6,7,8,9,10],2)
    def countt(data):
        global num
        num+=1
        return data

    rdd.map(countt).collect()
    print(num)
    # 10

Spark 内核调度

DAG

DAG:有向无环图

在spark中,**每一个 action算子都会将前面的一串rdd依赖链条执行起来,**这些执行链条其实就是DAG

有多少个action算子,就有多少个执行链条(JOB),就有多少个DAG

如果一个代码中,写了n个Action,那么这个代码运行起来产生n个JOB,每个JOB有自己的DAG个代码运行起来,在Spark中称之为: Application

spark中数据都是分区的,所以实际上每一个job都是带有分区关系的DAG

DAG 的宽窄依赖和阶段划分

RDD的前后关系分为 宽依赖和窄依赖

窄依赖:父RDD的一个分区,全部 将数据发给子RDD的一个分区

宽依赖:父RDD的一个分区将数据发给子RDD的多个分区

宽依赖还有一个别名: shuffle

对于Spark来说会根据DAG,按照宽依赖划分不同的DAG阶段
划分依据:从后向前,遇到宽依赖 就划分出一个阶段称之为stage

可以看到,在阶段内都是 窄依赖,这有助于构建内存迭代管道

内存迭代计算

在执行上图的程序时,最优的方式肯定是task1,2,3,4,5,6都在独立且单独的线程中完成(还存在另外一种情况,比如b1->p1,p1->下一个p1是不同的线程,那可能会在线程中存在网络IO调用,影响性能)

task1 中rdd1rdd2 rdd3 的选代计算,都是由一个task(线程完成),这一阶段的这一条线,是纯内存计算.如上图,task1 task2 task3,就形成了三个并行的内存计算管道

Spark默认受到全局并行度的限制,除了个别算子有特殊分区情况,大部分的算子,都会遵循全局并行度的要求,来规划自己的分区数如果全局并行度是3,其实大部分算子分区都是3
注意:Spark一般推荐只设置全局并行度,不要再算子上设置并行度除了一些排序算子外,计算算子就让他默认开分区就可以了.

Spark是怎么做内存计算的? DAG的作用?Stage阶段划分的作用?

  • Spark会产生DAG图
  • DAG图会基于分区和宽窄依赖关系划分阶段
  • 一个阶段的内部都是 窄依赖,窄依赖内,如果形成前后1:1的分区对应关系就可以产生许多内存选代计算的管道
  • 这些内存迭代计算的管道,就是一个个具体的执行Task
  • 一个Task是一个具体的线程,任务跑在一个线程内,就是走内存计算了

Spark为什么比MapReduce快?

  • Spark的算子丰富,MapReduce算子匮乏(Map和Reduce),MapReduce这个编程模型,很难在一套MR中处理复杂的任务.很多的复杂任务,是需要写多个MapReduce进行串联多个MR串联通过磁盘交互数据
  • Spark可以执行内存迭代,算子之间形成DAG 基于依赖划分阶段后,在阶段内形成内存选代管道.但是MapReduce的Map和Reduce之间的交互依旧是通过硬盘来交互的

Spark并行度

Spark的并行: 在同一时间内, 有多少个task在同时运行

并行度:并行能力的设置

比如设置并行度6,其实就是要6个task并行在跑在有了6个task并行的前提下,rdd的分区就被规划成6个分区了

优先级从高到低:

代码中

客户端提交参数中

配置文件中

默认(1,但是不会全部以1来跑,多数时候基于读取文件的分片数量来作为默认并行度)

集群如何规划并行度?

结论:设置为CPU总核心的2~10倍

为什么要设置最少2倍?

CPU的一个核心同一时间只能干一件事情所以,在100个核心的情况下,设置100个并行,就能让CPU 100%出力

这种设置下如果task的压力不均衡,某个task先执行完了就导致某个CPU核心空闲

所以,我们将Task(并行)分配的数量变多,比如800个并行,同一时间只有100个在运行,700个在等待.但是可以确保某个task运行完了.后续有task补上,不让cpu闲下来,最大程度利用集群的资源

Spark Shuffle

Spark在DAG调度阶段会将一个Job划分为多个Stage,上游Stage做map工作,下游Stage做reduce工作,其本质上 还是MapReduce计算框架。Shuffle是连接map和reduce之间的桥梁,它将map的输出对应到reduce输入中,涉及 到序列化反序列化、跨节点网络IO以及磁盘读写IO等。

Spark的Shuffle分为Write和Read两个阶段,分属于两个不同的Stage,前者是Parent Stage的最后一步,后者是 Child Stage的第一步。

在Spark的中,负责shuffle过程的执行、计算和处理的组件主要就是ShuffleManager,也即shuffle管理器。ShuffleManager随着 Spark的发展有两种实现的方式,分别为HashShuffleManager和SortShuffleManager,因此spark的Shuffle有Hash ShuffleSort Shuffle两种。

Hash Shuffle

未经优化的hashShuffleManager:

HashShuffle是根据task的计算结果的key值的hashcode%ReduceTask来决定放入哪一个区分,这样保证相同的数据 一定放入一个分区,根据下游的task决定生成几个文件,先生成缓冲区文件在写入磁盘文件,再将block文件进行合并。

一个task内部会根据hash分类,然后将不同类的数据放入不同的磁盘文件,未经优化的shuffle write操作所产生的磁盘文件的数量是极其惊人的,也就是下图所产生的的block file

优化的hashShuffleManager:

在shuffle write过程中,task就不是为下游stage的每个task创建一个磁盘文件了。此时会出现shuffleFileGroup的概 念,每个shuffleFileGroup会对应一批磁盘文件,每一个Group磁盘文件的数量与下游stage的task数量是相同的。

其实说到底就是其在executor内部就会进行数据的汇合操作,大大减少了磁盘文件的生成

Sort Shuffle

(1)该模式下,数据会先写入一个内存数据结构中(默认5M),此时根据不同的shuffle算子,可能选用不同的数据结构。如果是reduceByKey这种聚合类的shuffle算子,那么会选用Map数据结构,一边通过Map进行聚合,一边写入内 存;如果是join这种普通的shuffle算子,那么会选用Array数据结构,直接写入内存。

(2)接着,每写一条数据进入内存数据结构之后,就会判断一下,是否达到了某个临界阈值。如果达到临界阈值的话 ,那么就会尝试将内存数据结构中的数据溢写到磁盘,然后清空内存数据结构。

(3)排序 在溢写到磁盘文件之前,会先根据key对内存数据结构中已有的数据进行排序。 (4)溢写 排序过后,会分批将数据写入磁盘文件。默认的batch数量是10000条,也就是说,排序好的数据,会以每批1万条数 据的形式分批写入磁盘文件。

(5)merge 一个task将所有数据写入内存数据结构的过程中,会发生多次磁盘溢写操作,也就会产生多个临时文件。最后会将之 前所有的临时磁盘文件都进行合并成1个磁盘文件,这就是merge过程。 由于一个task就只对应一个磁盘文件,也就意味着该task为Reduce端的stage的task准备的数据都在这一个文件中, 因此还会单独写一份索引文件,其中标识了下游各个task的数据在文件中的start offset与end offset。


说到底最大的区别就是,一个task只会生成一个磁盘文件和一个索引文件,大大降低了磁盘占有和网络IO数量

Sort Shuffle bypass机制

bypass运行机制的触发条件如下:

1)shuffle map task数量小于spark.shuffle.sort.bypassMergeThreshold=200参数的值。

2)不是map combine聚合的shuffle算子(比如reduceByKey有map combie)(这种算子不需要排序)

此时task会为每个reduce端的task都创建一个临时磁盘文件,并将数据按key进行hash,然后根据key的hash值, 将key写入对应的磁盘文件之中。当然,写入磁盘文件时也是先写入内存缓冲,缓冲写满之后再溢写到磁盘文件的 。最后,同样会将所有临时磁盘文件都合并成一个磁盘文件,并创建一个单独的索引文件。

该过程的磁盘写机制其实跟未经优化的HashShuffleManager是一模一样的,因为都要创建数量惊人的磁盘文件, 只是在最后会做一个磁盘文件的合并而已。因此少量的最终磁盘文件,也让该机制相对未经优化的 HashShuffleManager来说,shuffle read的性能会更好


而该机制与普通SortShuffleManager运行机制的不同在于:

第一,磁盘写机制不同;

第二,不会进行排序。也就是说,启用该机制的最大好处在于,shuffle write过程中,不需要进行数据的排序操作, 也就节省掉了这部分的性能开销。

Spark执行流程

在大方向上:

  1. 提交代码
  2. 生成Driver ,DAG Scheduler规划逻辑任务
  3. 生成Executor(被Driver生成)
  4. Driver内TaskScheduler去监控整个Spark程序的执行

在细节上,以YARN为例:

启动ApplicationMaster

AM启动Driver

  • Driver构建DAG调度器规划任务

  • Driver和AM通讯.AM得知要多少容器去申请

  • Driver在申请的容器内部启动Executor

  • Driver内的Task调度器,调度任务执行

相关推荐
Json_1817901448039 分钟前
An In-depth Look into the 1688 Product Details Data API Interface
大数据·json
萧鼎1 小时前
Python并发编程库:Asyncio的异步编程实战
开发语言·数据库·python·异步
学地理的小胖砸1 小时前
【一些关于Python的信息和帮助】
开发语言·python
疯一样的码农1 小时前
Python 继承、多态、封装、抽象
开发语言·python
Python大数据分析@1 小时前
python操作CSV和excel,如何来做?
开发语言·python·excel
黑叶白树1 小时前
简单的签到程序 python笔记
笔记·python
lzhlizihang2 小时前
【spark的集群模式搭建】Standalone集群模式的搭建(简单明了的安装教程)
spark·standalone模式·spark集群搭建
Shy9604182 小时前
Bert完形填空
python·深度学习·bert
上海_彭彭2 小时前
【提效工具开发】Python功能模块执行和 SQL 执行 需求整理
开发语言·python·sql·测试工具·element
zhongcx012 小时前
使用Python查找大文件的实用脚本
python