P1002 [NOIP2002 普及组] 过河卒题解

题目

棋盘上A点有一个过河卒,需要走到目标B点。卒行走的规则:可以向下、或者向右。同时在棋盘上C点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为"马拦过河卒"。

棋盘用坐标表示A点(0,0)(0,0)、B点(n,m),同样马的位置坐标是需要给出的。

现在要求你计算出卒从A点能够到达B点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步。

输入输出格式

输入格式

一行四个正整数,分别表示B点坐标和马的坐标。

输出格式

一个整数,表示所有的路径条数。

解析

这个题目是一个典型的动态规划的题目,同样采用递推的思想,找出点的状态转移方程,只是需要更多的考虑一个马阻止走的格子。

复制代码
#include<iostream>
using namespace std;
const int dir[8][2]={{1,2},{1,-2},{2,1},{2,-1},{-1,2},{-1,-2},{-2,1},{-2,-1}};
bool d[30][30];
long long dp[30][30],n,m,cx,cy;
int main(){
	cin>>n>>m>>cx>>cy;
	d[cx][cy]=true;
	for(int i=0;i<8;i++){//标记不能走的地方 
		int tx=cx+dir[i][0],ty=cy+dir[i][1];
		if(tx>=0&&tx<=n&&ty>=0&&ty<=m){
			d[tx][ty]=true;
		}
	} 
	dp[0][0]=1;
	for(int i=0;i<=n;i++){
		for(int j=0;j<=m;j++){
			if(d[i][j]==false){//根据状态转移方程求解 
				if(i){
					dp[i][j]+=dp[i-1][j];
				}
				if(j){
					dp[i][j]+=dp[i][j-1];
				}
			}
		}
	}
	cout<<dp[n][m]<<endl;
	return 0;
}
相关推荐
D_evil__5 小时前
【Effective Modern C++】第三章 转向现代C++:16. 让const成员函数线程安全
c++
wfeqhfxz25887825 小时前
YOLO13-C3k2-GhostDynamicConv烟雾检测算法实现与优化
人工智能·算法·计算机视觉
Aaron15886 小时前
基于RFSOC的数字射频存储技术应用分析
c语言·人工智能·驱动开发·算法·fpga开发·硬件工程·信号处理
Queenie_Charlie6 小时前
前缀和的前缀和
数据结构·c++·树状数组
kokunka7 小时前
【源码+注释】纯C++小游戏开发之射击小球游戏
开发语言·c++·游戏
_不会dp不改名_7 小时前
leetcode_3010 将数组分成最小总代价的子数组 I
算法·leetcode·职场和发展
John_ToDebug9 小时前
浏览器内核崩溃深度分析:从 MiniDump 堆栈到 BindOnce UAF 机制(未完待续...)
c++·chrome·windows
你撅嘴真丑9 小时前
字符环 与 变换的矩阵
算法
早点睡觉好了9 小时前
重排序 (Re-ranking) 算法详解
算法·ai·rag
gihigo19989 小时前
基于全局自适应动态规划(GADP)的MATLAB实现方案
算法