bert-vits2本地部署报错疑难问题汇总

环境:

bert-vits2.3

win 和wsl

问题描述:

bert-vits2本地部署报错疑难问题汇总

解决方案:

问题1:

Conda安装requirements里面依赖出现ERROR: No matching distribution found for opencc==1.1.6

解决方法

bash 复制代码
需要在 Python 3.11 上使用 OpenCC
打开requirements把opencc== 1.16改成1.17保存文本

问题2:

error: Microsoft Visual C++ 14.0 or greater is required. Get it with "Microsoft C++ Build Tool

解决方法

bash 复制代码
conda install libpython m2w64-toolchain -c msys2
bash 复制代码
 conda install -c conda-forge jieba_fast

安装VS2019

单独安装2个组件

问题3:

训练报错

TypeError: Webui_config.init() got an unexpected keyword argument 'fp16_run'

解决方法

bash 复制代码
配置文件没有更新,更新配置文件

问题4:

训练报错

rank0\]: OSError: Error no file named pytorch_model.bin, tf_model.h5, model.ckpt.index or flax_model.msgpack found in directory ./slm/wavlm-base-plus. 解决方法 没有下载pytorch_model.bin 在下面这个文件夹 ![在这里插入图片描述](https://file.jishuzhan.net/article/1756878182255955969/614a142075c1af1015f567f3602f7108.webp) **问题5:** 训练报错 RuntimeError: The expanded size of the tensor (1024) must match the existing size (2048) at non-singleton dimension 0. Target sizes: \[1024, 157\]. Tensor sizes: \[2048, 157

解决方法

bash 复制代码
删除原来生产bert文件重新生成

问题6:

raise KeyError("param 'initial_lr' is not specified "

rank0\]: KeyError: "param 'initial_lr' is not specified in param_groups\[0\] when resuming an optimizer" 解决方法 ```bash 优化爆了,手动改优化器train_ms.py代码 # 更改优化器的初始学习率参数 optim_g.param_groups[0]['initial_lr'] = 0.1 optim_d.param_groups[0]['initial_lr'] = 0.1 optim_wd.param_groups[0]['initial_lr'] = 0.1 optim_dur_disc.param_groups[0]['initial_lr'] = 0.1 # 创建调度器并应用更改后的优化器 scheduler_g = torch.optim.lr_scheduler.ExponentialLR( optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2 ) scheduler_d = torch.optim.lr_scheduler.ExponentialLR( optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2 ) scheduler_wd = torch.optim.lr_scheduler.ExponentialLR( optim_wd, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2 ) if net_dur_disc is not None: scheduler_dur_disc = torch.optim.lr_scheduler.ExponentialLR( optim_dur_disc, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2 ) ```

相关推荐
新智元14 分钟前
一句话,性能暴涨 49%!马里兰 MIT 等力作:Prompt 才是大模型终极武器
人工智能·openai
猫头虎21 分钟前
猫头虎AI分享|一款Coze、Dify类开源AI应用超级智能体Agent快速构建工具:FastbuildAI
人工智能·开源·github·aigc·ai编程·ai写作·ai-native
新智元37 分钟前
AI 版华尔街之狼!o3-mini 靠「神之押注」狂赚 9 倍,DeepSeek R1 最特立独行
人工智能·openai
天下弈星~1 小时前
GANs生成对抗网络生成手写数字的Pytorch实现
人工智能·pytorch·深度学习·神经网络·生成对抗网络·gans
重启的码农1 小时前
ggml介绍 (8) 图分配器 (ggml_gallocr)
c++·人工智能·神经网络
重启的码农1 小时前
ggml介绍 (9) 后端调度器 (ggml_backend_sched)
c++·人工智能·神经网络
aneasystone本尊1 小时前
学习 Coze Studio 的智能体执行逻辑
人工智能
盏灯1 小时前
Trae SOLO 游戏 —— 🐾🐱🐾猫咪追蝌蚪🐸
人工智能·trae
lisuwen1161 小时前
AI三国杀:马斯克炮轰苹果“偏袒”OpenAI,Grok与ChatGPT的应用商店战争揭秘
人工智能·chatgpt
暮小暮1 小时前
从ChatGPT到智能助手:Agent智能体如何颠覆AI应用
人工智能·深度学习·神经网络·ai·语言模型·chatgpt