bert-vits2本地部署报错疑难问题汇总

环境:

bert-vits2.3

win 和wsl

问题描述:

bert-vits2本地部署报错疑难问题汇总

解决方案:

问题1:

Conda安装requirements里面依赖出现ERROR: No matching distribution found for opencc==1.1.6

解决方法

bash 复制代码
需要在 Python 3.11 上使用 OpenCC
打开requirements把opencc== 1.16改成1.17保存文本

问题2:

error: Microsoft Visual C++ 14.0 or greater is required. Get it with "Microsoft C++ Build Tool

解决方法

bash 复制代码
conda install libpython m2w64-toolchain -c msys2
bash 复制代码
 conda install -c conda-forge jieba_fast

安装VS2019

单独安装2个组件

问题3:

训练报错

TypeError: Webui_config.init() got an unexpected keyword argument 'fp16_run'

解决方法

bash 复制代码
配置文件没有更新,更新配置文件

问题4:

训练报错

rank0\]: OSError: Error no file named pytorch_model.bin, tf_model.h5, model.ckpt.index or flax_model.msgpack found in directory ./slm/wavlm-base-plus. 解决方法 没有下载pytorch_model.bin 在下面这个文件夹 ![在这里插入图片描述](https://file.jishuzhan.net/article/1756878182255955969/614a142075c1af1015f567f3602f7108.webp) **问题5:** 训练报错 RuntimeError: The expanded size of the tensor (1024) must match the existing size (2048) at non-singleton dimension 0. Target sizes: \[1024, 157\]. Tensor sizes: \[2048, 157

解决方法

bash 复制代码
删除原来生产bert文件重新生成

问题6:

raise KeyError("param 'initial_lr' is not specified "

rank0\]: KeyError: "param 'initial_lr' is not specified in param_groups\[0\] when resuming an optimizer" 解决方法 ```bash 优化爆了,手动改优化器train_ms.py代码 # 更改优化器的初始学习率参数 optim_g.param_groups[0]['initial_lr'] = 0.1 optim_d.param_groups[0]['initial_lr'] = 0.1 optim_wd.param_groups[0]['initial_lr'] = 0.1 optim_dur_disc.param_groups[0]['initial_lr'] = 0.1 # 创建调度器并应用更改后的优化器 scheduler_g = torch.optim.lr_scheduler.ExponentialLR( optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2 ) scheduler_d = torch.optim.lr_scheduler.ExponentialLR( optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2 ) scheduler_wd = torch.optim.lr_scheduler.ExponentialLR( optim_wd, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2 ) if net_dur_disc is not None: scheduler_dur_disc = torch.optim.lr_scheduler.ExponentialLR( optim_dur_disc, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2 ) ```

相关推荐
老蒋新思维28 分钟前
知识IP的长期主义:当AI成为跨越增长曲线的“第二曲线引擎”|创客匠人
大数据·人工智能·tcp/ip·机器学习·创始人ip·创客匠人·知识变现
货拉拉技术36 分钟前
出海技术挑战——Lalamove智能告警降噪
人工智能·后端·监控
wei202340 分钟前
汽车智能体Agent:国务院“人工智能+”行动意见 对汽车智能体领域 革命性重塑
人工智能·汽车·agent·智能体
LinkTime_Cloud1 小时前
快手遭遇T0级“黑色闪电”:一场教科书式的“协同打击”,披上了AI“智能外衣”的攻击
人工智能
PPIO派欧云1 小时前
PPIO上线MiniMax-M2.1:聚焦多语言编程与真实世界复杂任务
人工智能
隔壁阿布都1 小时前
使用LangChain4j +Springboot 实现大模型与向量化数据库协同回答
人工智能·spring boot·后端
Coding茶水间1 小时前
基于深度学习的水面垃圾检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
乐迪信息2 小时前
乐迪信息:煤矿皮带区域安全管控:人员违规闯入智能识别
大数据·运维·人工智能·物联网·安全
Dragon水魅2 小时前
使用 LLaMA Factory 微调一个 Qwen3-0.6B 猫娘
人工智能·语言模型
Deepoch2 小时前
Deepoc具身模型开发板:农业机器人的“智能升级模块”革命
人工智能·科技·机器人·采摘机器人·农业机器人·具身模型·deepoc