bert-vits2本地部署报错疑难问题汇总

环境:

bert-vits2.3

win 和wsl

问题描述:

bert-vits2本地部署报错疑难问题汇总

解决方案:

问题1:

Conda安装requirements里面依赖出现ERROR: No matching distribution found for opencc==1.1.6

解决方法

bash 复制代码
需要在 Python 3.11 上使用 OpenCC
打开requirements把opencc== 1.16改成1.17保存文本

问题2:

error: Microsoft Visual C++ 14.0 or greater is required. Get it with "Microsoft C++ Build Tool

解决方法

bash 复制代码
conda install libpython m2w64-toolchain -c msys2
bash 复制代码
 conda install -c conda-forge jieba_fast

安装VS2019

单独安装2个组件

问题3:

训练报错

TypeError: Webui_config.init() got an unexpected keyword argument 'fp16_run'

解决方法

bash 复制代码
配置文件没有更新,更新配置文件

问题4:

训练报错

[rank0]: OSError: Error no file named pytorch_model.bin, tf_model.h5, model.ckpt.index or flax_model.msgpack found in directory ./slm/wavlm-base-plus.

解决方法

没有下载pytorch_model.bin 在下面这个文件夹

问题5:

训练报错

RuntimeError: The expanded size of the tensor (1024) must match the existing size (2048) at non-singleton dimension 0. Target sizes: [1024, 157]. Tensor sizes: [2048, 157]

解决方法

bash 复制代码
删除原来生产bert文件重新生成

问题6:

raise KeyError("param 'initial_lr' is not specified "

[rank0]: KeyError: "param 'initial_lr' is not specified in param_groups[0] when resuming an optimizer"

解决方法

bash 复制代码
优化爆了,手动改优化器train_ms.py代码




# 更改优化器的初始学习率参数
optim_g.param_groups[0]['initial_lr'] = 0.1
optim_d.param_groups[0]['initial_lr'] = 0.1
optim_wd.param_groups[0]['initial_lr'] = 0.1
optim_dur_disc.param_groups[0]['initial_lr'] = 0.1

# 创建调度器并应用更改后的优化器
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
    optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
)
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
    optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
)
scheduler_wd = torch.optim.lr_scheduler.ExponentialLR(
    optim_wd, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
)
if net_dur_disc is not None:
    scheduler_dur_disc = torch.optim.lr_scheduler.ExponentialLR(
        optim_dur_disc, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
    )
相关推荐
余生H5 分钟前
transformer.js(三):底层架构及性能优化指南
javascript·深度学习·架构·transformer
果冻人工智能24 分钟前
2025 年将颠覆商业的 8 大 AI 应用场景
人工智能·ai员工
代码不行的搬运工26 分钟前
神经网络12-Time-Series Transformer (TST)模型
人工智能·神经网络·transformer
石小石Orz28 分钟前
Three.js + AI:AI 算法生成 3D 萤火虫飞舞效果~
javascript·人工智能·算法
罗小罗同学34 分钟前
医工交叉入门书籍分享:Transformer模型在机器学习领域的应用|个人观点·24-11-22
深度学习·机器学习·transformer
孤独且没人爱的纸鹤37 分钟前
【深度学习】:从人工神经网络的基础原理到循环神经网络的先进技术,跨越智能算法的关键发展阶段及其未来趋势,探索技术进步与应用挑战
人工智能·python·深度学习·机器学习·ai
阿_旭39 分钟前
TensorFlow构建CNN卷积神经网络模型的基本步骤:数据处理、模型构建、模型训练
人工智能·深度学习·cnn·tensorflow
羊小猪~~40 分钟前
tensorflow案例7--数据增强与测试集, 训练集, 验证集的构建
人工智能·python·深度学习·机器学习·cnn·tensorflow·neo4j
极客代码1 小时前
【Python TensorFlow】进阶指南(续篇三)
开发语言·人工智能·python·深度学习·tensorflow
zhangfeng11331 小时前
pytorch 的交叉熵函数,多分类,二分类
人工智能·pytorch·分类