使用R语言fifer包进行分层采样

使用R语言fifer包中的stratified()函数用来进行分层采样非常方便,但fifer包已经从CRAN存储库中删除,需要从存档中下载可用的历史版本,下载链接:Index of /src/contrib/Archive/fifer (r-project.org)https://cran.r-project.org/src/contrib/Archive/fifer/

随后下载devtools包用以辅助安装和管理R包:

R 复制代码
install.packages("devtools")

devtools包安装完成,然后将fifer包解压并放到R语言安装路径中的library文件夹里,随后在终端输入以下代码并修改成自己的安装路径:

R 复制代码
devtools::install_local("C:/Program Files/R/R-4.3.2/library/fifer",force = TRUE)

随后使用R自带的iris数据集进行测试:

R 复制代码
iris.df <- data.frame(iris)
#建立iris的子集检索,并进行随机采样
sample.index <- sample(1:nrow(iris.df), nrow(iris) * 0.75,
                       replace = FALSE)
#把replace设置为FALSE,这样就不会重复抽取到该列数据

在Environment栏及终端查看irisa数据与随机抽选出来的数据:

R 复制代码
> head(iris[sample.index, ])
       Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
146          6.7         3.0          5.2         2.3  virginica
56           5.7         2.8          4.5         1.3 versicolor
131          7.4         2.8          6.1         1.9  virginica
65           5.6         2.9          3.6         1.3 versicolor
71           5.9         3.2          4.8         1.8 versicolor
16           5.7         4.4          1.5         0.4     setosa

查看iris数据集的数据分布情况:

R 复制代码
> summary(iris)
  Sepal.Length    Sepal.Width     Petal.Length    Petal.Width   
 Min.   :4.300   Min.   :2.000   Min.   :1.000   Min.   :0.100  
 1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300  
 Median :5.800   Median :3.000   Median :4.350   Median :1.300  
 Mean   :5.843   Mean   :3.057   Mean   :3.758   Mean   :1.199  
 3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.100   3rd Qu.:1.800  
 Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500  
       Species  
 setosa    :50  
 versicolor:50  
 virginica :50 

使用stratified()函数进行分层采样,针对iris数据集中方差最小的特征Sepal.Width和Petal.Width,选取70%采样:

R 复制代码
> summary(stratified(iris, c("Sepal.Width", "Petal.Width"), 0.7))
  Sepal.Length    Sepal.Width     Petal.Length    Petal.Width   
 Min.   :4.400   Min.   :2.000   Min.   :1.000   Min.   :0.100  
 1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300  
 Median :5.800   Median :3.000   Median :4.250   Median :1.300  
 Mean   :5.861   Mean   :3.053   Mean   :3.804   Mean   :1.222  
 3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.125   3rd Qu.:1.800  
 Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500  
       Species  
 setosa    :37  
 versicolor:38  
 virginica :41 

最后编写函数,按照给定的随机初始数字依次选择每个第n行,用以系统采样:

R 复制代码
> sys.sample = function(N, n) {
+     k = ceiling(N/n)
+     r = sample(1:k, 1)
+     sys.samp = seq(r, r+k*(n-1), k)
+ }
#Windows环境下的RStudio终端可以使用Shift+Enter换行
> systematic.index <- sys.sample(nrow(iris), nrow(iris) * 0.75)
> summary(iris[systematic.index, ])
  Sepal.Length    Sepal.Width     Petal.Length   Petal.Width  
 Min.   :4.300   Min.   :2.200   Min.   :1.10   Min.   :0.10  
 1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.55   1st Qu.:0.35  
 Median :5.700   Median :3.000   Median :4.20   Median :1.30  
 Mean   :5.847   Mean   :3.051   Mean   :3.74   Mean   :1.18  
 3rd Qu.:6.400   3rd Qu.:3.250   3rd Qu.:5.10   3rd Qu.:1.80  
 Max.   :7.900   Max.   :4.400   Max.   :6.70   Max.   :2.50  
 NA's   :37      NA's   :37      NA's   :37     NA's   :37    
       Species  
 setosa    :25  
 versicolor:25  
 virginica :25  
 NA's      :37 
相关推荐
jiang_changsheng2 天前
环境管理工具全景图与深度对比
java·c语言·开发语言·c++·python·r语言
JicasdC123asd2 天前
使用Faster R-CNN模型训练汽车品牌与型号检测数据集 改进C4结构 优化汽车识别系统 多类别检测 VOC格式
r语言·cnn·汽车
请你喝好果汁6412 天前
## 学习笔记:R 语言中比例字符串的数值转换,如GeneRatio中5/100的处理
笔记·学习·r语言
怦怦蓝2 天前
DB2深度解析:从架构原理到与R语言的集成实践
开发语言·架构·r语言·db2
新新学长搞科研2 天前
【CCF主办 | 高认可度会议】第六届人工智能、大数据与算法国际学术会议(CAIBDA 2026)
大数据·开发语言·网络·人工智能·算法·r语言·中国计算机学会
Piar1231sdafa3 天前
战斗车辆状态识别与分类 --- 基于Mask R-CNN和RegNet的模型实现
r语言·cnn
陳土3 天前
R语言Offier包源码—1:read_docx()
r语言
善木科研喵3 天前
IF5.9分,α-硫辛酸如何缓解化疗神经毒性?网络毒理学结合网络药理学双重锁定关键通路!
数据库·数据分析·r语言·sci·生信分析·医学科研
Piar1231sdafa4 天前
椅子目标检测新突破:Cascade R-CNN模型详解与性能优化_1
目标检测·r语言·cnn
Loacnasfhia94 天前
基于Mask R-CNN与RegNetX的钢水罐及未定义物体目标检测系统研究_1
目标检测·r语言·cnn