使用R语言fifer包进行分层采样

使用R语言fifer包中的stratified()函数用来进行分层采样非常方便,但fifer包已经从CRAN存储库中删除,需要从存档中下载可用的历史版本,下载链接:Index of /src/contrib/Archive/fifer (r-project.org)https://cran.r-project.org/src/contrib/Archive/fifer/

随后下载devtools包用以辅助安装和管理R包:

R 复制代码
install.packages("devtools")

devtools包安装完成,然后将fifer包解压并放到R语言安装路径中的library文件夹里,随后在终端输入以下代码并修改成自己的安装路径:

R 复制代码
devtools::install_local("C:/Program Files/R/R-4.3.2/library/fifer",force = TRUE)

随后使用R自带的iris数据集进行测试:

R 复制代码
iris.df <- data.frame(iris)
#建立iris的子集检索,并进行随机采样
sample.index <- sample(1:nrow(iris.df), nrow(iris) * 0.75,
                       replace = FALSE)
#把replace设置为FALSE,这样就不会重复抽取到该列数据

在Environment栏及终端查看irisa数据与随机抽选出来的数据:

R 复制代码
> head(iris[sample.index, ])
       Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
146          6.7         3.0          5.2         2.3  virginica
56           5.7         2.8          4.5         1.3 versicolor
131          7.4         2.8          6.1         1.9  virginica
65           5.6         2.9          3.6         1.3 versicolor
71           5.9         3.2          4.8         1.8 versicolor
16           5.7         4.4          1.5         0.4     setosa

查看iris数据集的数据分布情况:

R 复制代码
> summary(iris)
  Sepal.Length    Sepal.Width     Petal.Length    Petal.Width   
 Min.   :4.300   Min.   :2.000   Min.   :1.000   Min.   :0.100  
 1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300  
 Median :5.800   Median :3.000   Median :4.350   Median :1.300  
 Mean   :5.843   Mean   :3.057   Mean   :3.758   Mean   :1.199  
 3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.100   3rd Qu.:1.800  
 Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500  
       Species  
 setosa    :50  
 versicolor:50  
 virginica :50 

使用stratified()函数进行分层采样,针对iris数据集中方差最小的特征Sepal.Width和Petal.Width,选取70%采样:

R 复制代码
> summary(stratified(iris, c("Sepal.Width", "Petal.Width"), 0.7))
  Sepal.Length    Sepal.Width     Petal.Length    Petal.Width   
 Min.   :4.400   Min.   :2.000   Min.   :1.000   Min.   :0.100  
 1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300  
 Median :5.800   Median :3.000   Median :4.250   Median :1.300  
 Mean   :5.861   Mean   :3.053   Mean   :3.804   Mean   :1.222  
 3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.125   3rd Qu.:1.800  
 Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500  
       Species  
 setosa    :37  
 versicolor:38  
 virginica :41 

最后编写函数,按照给定的随机初始数字依次选择每个第n行,用以系统采样:

R 复制代码
> sys.sample = function(N, n) {
+     k = ceiling(N/n)
+     r = sample(1:k, 1)
+     sys.samp = seq(r, r+k*(n-1), k)
+ }
#Windows环境下的RStudio终端可以使用Shift+Enter换行
> systematic.index <- sys.sample(nrow(iris), nrow(iris) * 0.75)
> summary(iris[systematic.index, ])
  Sepal.Length    Sepal.Width     Petal.Length   Petal.Width  
 Min.   :4.300   Min.   :2.200   Min.   :1.10   Min.   :0.10  
 1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.55   1st Qu.:0.35  
 Median :5.700   Median :3.000   Median :4.20   Median :1.30  
 Mean   :5.847   Mean   :3.051   Mean   :3.74   Mean   :1.18  
 3rd Qu.:6.400   3rd Qu.:3.250   3rd Qu.:5.10   3rd Qu.:1.80  
 Max.   :7.900   Max.   :4.400   Max.   :6.70   Max.   :2.50  
 NA's   :37      NA's   :37      NA's   :37     NA's   :37    
       Species  
 setosa    :25  
 versicolor:25  
 virginica :25  
 NA's      :37 
相关推荐
Tiger Z21 小时前
R 语言科研绘图第 41 期 --- 桑基图-基础
开发语言·r语言·贴图
jerry2011082 天前
R语言之rjava版本不匹配解决方法
开发语言·r语言
Tiger Z5 天前
R 语言科研绘图 --- 饼状图-汇总
开发语言·人工智能·程序人生·r语言·贴图
maizeman1265 天前
R语言——方差分析2
开发语言·r语言·可视化·方差分析·单因素·多重t检验多重比较·tukey多重比较
zhanghongyi_cpp8 天前
R语言操作练习2
r语言
jerry2011088 天前
R语言之环境清理
开发语言·r语言
TDengine (老段)9 天前
TDengine 语言连接器(R语言)
大数据·数据库·物联网·r语言·时序数据库·tdengine·iotdb
maizeman12610 天前
R语言——分布和公式
开发语言·r语言·公式·随机数·分布
Tiger Z10 天前
R 语言科研绘图第 39 期 --- 饼状图-旭日
开发语言·程序人生·r语言·贴图
清同趣科研11 天前
扩增子分析|基于R语言microeco包进行微生物群落网络分析(network网络、Zi-Pi关键物种和subnet子网络图)
r语言