使用R语言fifer包进行分层采样

使用R语言fifer包中的stratified()函数用来进行分层采样非常方便,但fifer包已经从CRAN存储库中删除,需要从存档中下载可用的历史版本,下载链接:Index of /src/contrib/Archive/fifer (r-project.org)https://cran.r-project.org/src/contrib/Archive/fifer/

随后下载devtools包用以辅助安装和管理R包:

R 复制代码
install.packages("devtools")

devtools包安装完成,然后将fifer包解压并放到R语言安装路径中的library文件夹里,随后在终端输入以下代码并修改成自己的安装路径:

R 复制代码
devtools::install_local("C:/Program Files/R/R-4.3.2/library/fifer",force = TRUE)

随后使用R自带的iris数据集进行测试:

R 复制代码
iris.df <- data.frame(iris)
#建立iris的子集检索,并进行随机采样
sample.index <- sample(1:nrow(iris.df), nrow(iris) * 0.75,
                       replace = FALSE)
#把replace设置为FALSE,这样就不会重复抽取到该列数据

在Environment栏及终端查看irisa数据与随机抽选出来的数据:

R 复制代码
> head(iris[sample.index, ])
       Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
146          6.7         3.0          5.2         2.3  virginica
56           5.7         2.8          4.5         1.3 versicolor
131          7.4         2.8          6.1         1.9  virginica
65           5.6         2.9          3.6         1.3 versicolor
71           5.9         3.2          4.8         1.8 versicolor
16           5.7         4.4          1.5         0.4     setosa

查看iris数据集的数据分布情况:

R 复制代码
> summary(iris)
  Sepal.Length    Sepal.Width     Petal.Length    Petal.Width   
 Min.   :4.300   Min.   :2.000   Min.   :1.000   Min.   :0.100  
 1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300  
 Median :5.800   Median :3.000   Median :4.350   Median :1.300  
 Mean   :5.843   Mean   :3.057   Mean   :3.758   Mean   :1.199  
 3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.100   3rd Qu.:1.800  
 Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500  
       Species  
 setosa    :50  
 versicolor:50  
 virginica :50 

使用stratified()函数进行分层采样,针对iris数据集中方差最小的特征Sepal.Width和Petal.Width,选取70%采样:

R 复制代码
> summary(stratified(iris, c("Sepal.Width", "Petal.Width"), 0.7))
  Sepal.Length    Sepal.Width     Petal.Length    Petal.Width   
 Min.   :4.400   Min.   :2.000   Min.   :1.000   Min.   :0.100  
 1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300  
 Median :5.800   Median :3.000   Median :4.250   Median :1.300  
 Mean   :5.861   Mean   :3.053   Mean   :3.804   Mean   :1.222  
 3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.125   3rd Qu.:1.800  
 Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500  
       Species  
 setosa    :37  
 versicolor:38  
 virginica :41 

最后编写函数,按照给定的随机初始数字依次选择每个第n行,用以系统采样:

R 复制代码
> sys.sample = function(N, n) {
+     k = ceiling(N/n)
+     r = sample(1:k, 1)
+     sys.samp = seq(r, r+k*(n-1), k)
+ }
#Windows环境下的RStudio终端可以使用Shift+Enter换行
> systematic.index <- sys.sample(nrow(iris), nrow(iris) * 0.75)
> summary(iris[systematic.index, ])
  Sepal.Length    Sepal.Width     Petal.Length   Petal.Width  
 Min.   :4.300   Min.   :2.200   Min.   :1.10   Min.   :0.10  
 1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.55   1st Qu.:0.35  
 Median :5.700   Median :3.000   Median :4.20   Median :1.30  
 Mean   :5.847   Mean   :3.051   Mean   :3.74   Mean   :1.18  
 3rd Qu.:6.400   3rd Qu.:3.250   3rd Qu.:5.10   3rd Qu.:1.80  
 Max.   :7.900   Max.   :4.400   Max.   :6.70   Max.   :2.50  
 NA's   :37      NA's   :37      NA's   :37     NA's   :37    
       Species  
 setosa    :25  
 versicolor:25  
 virginica :25  
 NA's      :37 
相关推荐
Tiger Z2 天前
《R for Data Science (2e)》免费中文翻译 (第12章) --- Logical vectors(1)
数据分析·r语言·数据科学·免费书籍
AI纪元故事会3 天前
《目标检测全解析:从R-CNN到DETR,六大经典模型深度对比与实战指南》
人工智能·yolo·目标检测·r语言·cnn
小八四爱吃甜食4 天前
【R语言】构建GO、KEGG相关不同物种的R包
开发语言·golang·r语言
梦想的初衷~5 天前
生命周期评价(LCA):理论、方法与工具、典型案例全解析
r语言·农业·林业·环境科学·地理·气候变化·生命周期评价
asyxchenchong8885 天前
OpenLCA、GREET、R语言的生命周期评价方法、模型构建
开发语言·r语言
没有梦想的咸鱼185-1037-16635 天前
【生命周期评价(LCA)】基于OpenLCA、GREET、R语言的生命周期评价方法、模型构建
开发语言·数据分析·r语言
zhangfeng11336 天前
亲测有效的mem 流行病预测,时间序列预测,r语言做移动流行区间法,MEM流行病阈值设置指南
开发语言·r语言·生物信息
普通网友8 天前
Golang笔记——Interface类型
r语言
maizeman1268 天前
用R语言生成指定品种与对照的一元回归直线(含置信区间)
开发语言·回归·r语言·置信区间·品种测试
兮兮能吃能睡9 天前
R语言模型分析(一)(1)
开发语言·r语言