自动驾驶轨迹规划之kinodynamic planning

欢迎大家关注我的B站:

偷吃薯片的Zheng同学的个人空间-偷吃薯片的Zheng同学个人主页-哔哩哔哩视频 (bilibili.com)

本文PPT来自深蓝学院《移动机器人的运动规划》

目录

1.kinodynamic的背景

[2. old-school pipline](#2. old-school pipline)

3.example


1.kinodynamic的背景

kinodynamic是一个合成词,由运动学与动力学组成

这样的一个规划问题是受限于运动学约束:如避障、高阶微分模型。受限于动力学约束:如状态量控制量有界

2. old-school pipline

做轨迹规划的old-school pipline是由任务驱动先生成一个粗糙的路径再利用轨迹优化得到最终结果

首先区分路径规划和轨迹规划的区别

  • 路径规划一般未考虑了机器人的运动学、动力学约束,而轨迹规划两者都要考虑
  • 路径规划是对空间的规划,与时间参数无关,而轨迹规划是时空联合

那么后端优化考虑了运动学和动力学,为什么在前端路径查找还要考虑?

  • 这是一个coarse-to-fine的过程,如果前端考虑一定约束,后端优化的压力就小
  • 并且轨迹优化往往在给定信赖域中迭代进行,优化仅在局部区域,已经无法改变同伦
  • 如果该同伦路径运动学和动力学上不可行,优化也没有意义

3.example

这是经典的单轮车模型和两轮差速转向模型

这是自动驾驶中最常用的车辆二自由度模型,同时根据运动学约束有几种分类

如果只能匀速倒车或前进,车辆轨迹形成Reeds-Sheep曲线

如果只能匀速前进,车辆轨迹形成Dubins曲线

不清楚的读者请参考 【自动驾驶轨迹规划之最优控制】_最优控制理论路径规划-CSDN博客

【自动驾驶轨迹规划之dubins曲线与reeds-shepp曲线】_reeds-shepp和dubins曲线简介-CSDN博客

相关推荐
那个村的李富贵2 小时前
CANN加速下的AIGC“即时翻译”:AI语音克隆与实时变声实战
人工智能·算法·aigc·cann
power 雀儿2 小时前
Scaled Dot-Product Attention 分数计算 C++
算法
琹箐2 小时前
最大堆和最小堆 实现思路
java·开发语言·算法
renhongxia13 小时前
如何基于知识图谱进行故障原因、事故原因推理,需要用到哪些算法
人工智能·深度学习·算法·机器学习·自然语言处理·transformer·知识图谱
坚持就完事了3 小时前
数据结构之树(Java实现)
java·算法
算法备案代理3 小时前
大模型备案与算法备案,企业该如何选择?
人工智能·算法·大模型·算法备案
CV@CV3 小时前
2026自动驾驶商业化提速——从智驾平权到Robotaxi规模化落地
人工智能·机器学习·自动驾驶
赛姐在努力.3 小时前
【拓扑排序】-- 算法原理讲解,及实现拓扑排序,附赠热门例题
java·算法·图论
野犬寒鸦4 小时前
从零起步学习并发编程 || 第六章:ReentrantLock与synchronized 的辨析及运用
java·服务器·数据库·后端·学习·算法
霖霖总总4 小时前
[小技巧66]当自增主键耗尽:MySQL 主键溢出问题深度解析与雪花算法替代方案
mysql·算法