自动驾驶轨迹规划之kinodynamic planning

欢迎大家关注我的B站:

偷吃薯片的Zheng同学的个人空间-偷吃薯片的Zheng同学个人主页-哔哩哔哩视频 (bilibili.com)

本文PPT来自深蓝学院《移动机器人的运动规划》

目录

1.kinodynamic的背景

[2. old-school pipline](#2. old-school pipline)

3.example


1.kinodynamic的背景

kinodynamic是一个合成词,由运动学与动力学组成

这样的一个规划问题是受限于运动学约束:如避障、高阶微分模型。受限于动力学约束:如状态量控制量有界

2. old-school pipline

做轨迹规划的old-school pipline是由任务驱动先生成一个粗糙的路径再利用轨迹优化得到最终结果

首先区分路径规划和轨迹规划的区别

  • 路径规划一般未考虑了机器人的运动学、动力学约束,而轨迹规划两者都要考虑
  • 路径规划是对空间的规划,与时间参数无关,而轨迹规划是时空联合

那么后端优化考虑了运动学和动力学,为什么在前端路径查找还要考虑?

  • 这是一个coarse-to-fine的过程,如果前端考虑一定约束,后端优化的压力就小
  • 并且轨迹优化往往在给定信赖域中迭代进行,优化仅在局部区域,已经无法改变同伦
  • 如果该同伦路径运动学和动力学上不可行,优化也没有意义

3.example

这是经典的单轮车模型和两轮差速转向模型

这是自动驾驶中最常用的车辆二自由度模型,同时根据运动学约束有几种分类

如果只能匀速倒车或前进,车辆轨迹形成Reeds-Sheep曲线

如果只能匀速前进,车辆轨迹形成Dubins曲线

不清楚的读者请参考 【自动驾驶轨迹规划之最优控制】_最优控制理论路径规划-CSDN博客

【自动驾驶轨迹规划之dubins曲线与reeds-shepp曲线】_reeds-shepp和dubins曲线简介-CSDN博客

相关推荐
君义_noip12 小时前
信息学奥赛一本通 1661:有趣的数列 | 洛谷 P3200 [HNOI2009] 有趣的数列
c++·算法·组合数学·信息学奥赛·csp-s
程序员:钧念12 小时前
深度学习与强化学习的区别
人工智能·python·深度学习·算法·transformer·rag
英英_13 小时前
MATLAB数值计算基础教程
数据结构·算法·matlab
一起养小猫13 小时前
LeetCode100天Day14-轮转数组与买卖股票最佳时机
算法·leetcode·职场和发展
hele_two14 小时前
快速幂算法
c++·python·算法
l1t14 小时前
利用DeepSeek将python DLX求解数独程序格式化并改成3.x版本
开发语言·python·算法·数独
jllllyuz14 小时前
基于子集模拟的系统与静态可靠性分析及Matlab优化算法实现
算法·matlab·概率论
程序员-King.15 小时前
day143—递归—对称二叉树(LeetCode-101)
数据结构·算法·leetcode·二叉树·递归
BlockChain88815 小时前
字符串最后一个单词的长度
算法·go
爱吃泡芙的小白白15 小时前
深入解析:2024年AI大模型核心算法与应用全景
人工智能·算法·大模型算法