OK-Robot机器人实现零样本算法 可在非结构化环境下完成拾取与放置任务

纽约大学的机器人专家团队与Meta人工智能学院研发人员共同合作开发了一种新型机器人,该机器人具备在非结构化环境下的认知能力,可在陌生房间利用视觉语言模型(VLMs),进行物品的抓取与放置。在论文当中,该团队详细阐述了机器人的编程过程以及其在多个实际环境中的测试表现。

研究人员指出,视觉语言模型(VLMs)在过去几年中取得了很快的进步,在根据语言提示识别物体方面已经非常出色。此外团队成员也提到目前机器人夹具控制技术也在进步,机器人可以轻松的将物体拾起,即便是易碎或柔软材料,也不会将其弄坏。但基于VLMs与机器人结合的相关应用依旧处于待探索阶段。

该项研究当中,科学家们尝试运用Hello Robot公司所售的一款机器人来完成这一测试。该机器人具备轮子、杆子以及可伸缩手臂,手部设有夹具。研究团队为其配备了先前经过训练的视觉语言模型(VLMs),并将其命名为OK-Robot。

在实际落地测试方面,研究团队将OK-Robot分别带入10 个志愿者家中,用iPhone对室内场景进行扫描,使用LangSam和CLIP进行计算,并存储在语义内存中。之后给定一个必须选择的对象的语言查询,查询的语言表示与语义记忆相匹配。随后,导航和拾取基元将按顺序分步执行,移动到所需夹取的物品前进行拾取,之后在需要放置的位置,将物品放置。实际测试过程当中,OK-Robot顺利将架子上粉色的瓶子放置在垃圾桶当中。

OK-Robot共执行了多达170项抓取与放置测试,任务成功率为58%。然而这种成功率很大一部分受环境因素影响,比如物品太大,物品呈现半透明状态,以及物品太滑难以夹取等方面,研究团队重新整理空间之后,成功率提升至82%。

研究团队指出,OK-Robot所搭载的系统是零样本算法,这意味着OK-Robot没有在工作环境中接受过训练,因此所取得这样的成绩,证明搭载VLMs功能的机器人是可行的。

相关推荐
小众AI2 小时前
AI-on-the-edge-device - 将“旧”设备接入智能世界
人工智能·开源·ai编程
舟寒、2 小时前
【论文分享】Ultra-AV: 一个规范化自动驾驶汽车纵向轨迹数据集
人工智能·自动驾驶·汽车
梦云澜5 小时前
论文阅读(十二):全基因组关联研究中生物通路的图形建模
论文阅读·人工智能·深度学习
远洋录5 小时前
构建一个数据分析Agent:提升分析效率的实践
人工智能·ai·ai agent
IT古董6 小时前
【深度学习】常见模型-Transformer模型
人工智能·深度学习·transformer
沐雪架构师7 小时前
AI大模型开发原理篇-2:语言模型雏形之词袋模型
人工智能·语言模型·自然语言处理
python算法(魔法师版)8 小时前
深度学习深度解析:从基础到前沿
人工智能·深度学习
bohu839 小时前
亚博microros小车-原生ubuntu支持系列:16 机器人状态估计
ubuntu·机器人·imu·localization·microros·imu_tools
kakaZhui9 小时前
【llm对话系统】大模型源码分析之 LLaMA 位置编码 RoPE
人工智能·深度学习·chatgpt·aigc·llama
struggle20259 小时前
一个开源 GenBI AI 本地代理(确保本地数据安全),使数据驱动型团队能够与其数据进行互动,生成文本到 SQL、图表、电子表格、报告和 BI
人工智能·深度学习·目标检测·语言模型·自然语言处理·数据挖掘·集成学习