OK-Robot机器人实现零样本算法 可在非结构化环境下完成拾取与放置任务

纽约大学的机器人专家团队与Meta人工智能学院研发人员共同合作开发了一种新型机器人,该机器人具备在非结构化环境下的认知能力,可在陌生房间利用视觉语言模型(VLMs),进行物品的抓取与放置。在论文当中,该团队详细阐述了机器人的编程过程以及其在多个实际环境中的测试表现。

研究人员指出,视觉语言模型(VLMs)在过去几年中取得了很快的进步,在根据语言提示识别物体方面已经非常出色。此外团队成员也提到目前机器人夹具控制技术也在进步,机器人可以轻松的将物体拾起,即便是易碎或柔软材料,也不会将其弄坏。但基于VLMs与机器人结合的相关应用依旧处于待探索阶段。

该项研究当中,科学家们尝试运用Hello Robot公司所售的一款机器人来完成这一测试。该机器人具备轮子、杆子以及可伸缩手臂,手部设有夹具。研究团队为其配备了先前经过训练的视觉语言模型(VLMs),并将其命名为OK-Robot。

在实际落地测试方面,研究团队将OK-Robot分别带入10 个志愿者家中,用iPhone对室内场景进行扫描,使用LangSam和CLIP进行计算,并存储在语义内存中。之后给定一个必须选择的对象的语言查询,查询的语言表示与语义记忆相匹配。随后,导航和拾取基元将按顺序分步执行,移动到所需夹取的物品前进行拾取,之后在需要放置的位置,将物品放置。实际测试过程当中,OK-Robot顺利将架子上粉色的瓶子放置在垃圾桶当中。

OK-Robot共执行了多达170项抓取与放置测试,任务成功率为58%。然而这种成功率很大一部分受环境因素影响,比如物品太大,物品呈现半透明状态,以及物品太滑难以夹取等方面,研究团队重新整理空间之后,成功率提升至82%。

研究团队指出,OK-Robot所搭载的系统是零样本算法,这意味着OK-Robot没有在工作环境中接受过训练,因此所取得这样的成绩,证明搭载VLMs功能的机器人是可行的。

相关推荐
小润nature2 分钟前
Spec-Driven Development (SDD) 框架与开源 AI 智能体-意图的进化
人工智能·开源
后端小肥肠6 分钟前
复刻10W+爆款视频!我用Coze搭了个“人物故事”自动流水线,太香了!
人工智能·aigc·coze
轻竹办公PPT20 分钟前
2026 年工作计划 PPT 内容拆解,对比不同 AI 生成思路
人工智能·python·powerpoint
浔川python社27 分钟前
【版本更新提示】浔川 AI 翻译 v6.0 合规优化版已上线
人工智能
清 澜29 分钟前
c++高频知识点总结 第 1 章:语言基础与预处理
c++·人工智能·面试
OpenMiniServer1 小时前
AI全周期开发平台设计方案
人工智能
明月照山海-1 小时前
机器学习周报三十
人工智能·机器学习·计算机视觉
kisshuan123961 小时前
YOLO11-RevCol_声呐图像多目标检测_人员水雷飞机船舶识别与定位
人工智能·目标检测·计算机视觉
lkbhua莱克瓦241 小时前
人工智能(AI)形象介绍
人工智能·ai
shangjian0071 小时前
AI大模型-核心概念-深度学习
人工智能·深度学习