OK-Robot机器人实现零样本算法 可在非结构化环境下完成拾取与放置任务

纽约大学的机器人专家团队与Meta人工智能学院研发人员共同合作开发了一种新型机器人,该机器人具备在非结构化环境下的认知能力,可在陌生房间利用视觉语言模型(VLMs),进行物品的抓取与放置。在论文当中,该团队详细阐述了机器人的编程过程以及其在多个实际环境中的测试表现。

研究人员指出,视觉语言模型(VLMs)在过去几年中取得了很快的进步,在根据语言提示识别物体方面已经非常出色。此外团队成员也提到目前机器人夹具控制技术也在进步,机器人可以轻松的将物体拾起,即便是易碎或柔软材料,也不会将其弄坏。但基于VLMs与机器人结合的相关应用依旧处于待探索阶段。

该项研究当中,科学家们尝试运用Hello Robot公司所售的一款机器人来完成这一测试。该机器人具备轮子、杆子以及可伸缩手臂,手部设有夹具。研究团队为其配备了先前经过训练的视觉语言模型(VLMs),并将其命名为OK-Robot。

在实际落地测试方面,研究团队将OK-Robot分别带入10 个志愿者家中,用iPhone对室内场景进行扫描,使用LangSam和CLIP进行计算,并存储在语义内存中。之后给定一个必须选择的对象的语言查询,查询的语言表示与语义记忆相匹配。随后,导航和拾取基元将按顺序分步执行,移动到所需夹取的物品前进行拾取,之后在需要放置的位置,将物品放置。实际测试过程当中,OK-Robot顺利将架子上粉色的瓶子放置在垃圾桶当中。

OK-Robot共执行了多达170项抓取与放置测试,任务成功率为58%。然而这种成功率很大一部分受环境因素影响,比如物品太大,物品呈现半透明状态,以及物品太滑难以夹取等方面,研究团队重新整理空间之后,成功率提升至82%。

研究团队指出,OK-Robot所搭载的系统是零样本算法,这意味着OK-Robot没有在工作环境中接受过训练,因此所取得这样的成绩,证明搭载VLMs功能的机器人是可行的。

相关推荐
深度学习机器11 小时前
深度智能体框架DeepAgent剖析
人工智能·开源
星云数灵11 小时前
AI赋能传媒科技创新研究报告
人工智能·ai·大模型·生成式ai·ai赋能·传媒科技·传媒ai
金融小师妹11 小时前
基于机器学习与深度强化学习:非农数据触发AI多因子模型预警!12月降息预期骤降的货币政策预测
大数据·人工智能·深度学习·1024程序员节
walnut_oyb11 小时前
arXiv|SARLANG-1M:用于 SAR 图像理解的视觉-语言建模基准
论文阅读·人工智能·机器学习·计算机视觉·语言模型·自然语言处理
GOTXX11 小时前
CANN特性能力深度解析:释放AI计算潜能
人工智能
jinxinyuuuus11 小时前
Info Flow:分布式信息采集、数据去重与内容分级的工程实现
人工智能·分布式·程序人生·生活
IT_陈寒11 小时前
Spring Boot 3.2 性能翻倍秘诀:这5个配置优化让你的应用起飞🚀
前端·人工智能·后端
5***790011 小时前
MCP在边缘计算中的应用场景
人工智能·边缘计算
Tezign_space11 小时前
技术破局:人机协作如何重构内容生产流水线,实现成本与效能的范式转移
人工智能·重构·降本增效·人机协作·内容数字化·内容科技·内容+人工智能
小毅&Nora12 小时前
【人工智能】人工智能发展历程全景解析:从图灵测试到大模型时代(含CNN、Q-Learning深度实践)
人工智能·cnn·q-learning