OpenCV-42 直方图均匀化

目录

一、直方图均匀化原理

二、直方图均匀化在OpenCV中的运用


一、直方图均匀化原理

直方图均匀化是通过拉伸像素强度的分布范围,使得在0~255灰阶上的分布更加均匀,提高图像的对比度。达到改善图像主管视觉效果的目的。对比度较低的图像适合使用直方图均衡化的方法来增强图像细节。

原理

  1. 计算累计直方图
  2. 将累计直方图进行区间转换
  3. 在累计直方图中,概率相近的原始值,会被处理为相同的值

最初的像素点都在0-7之间,最后我们将其规划到0~255中间。

二、直方图均匀化在OpenCV中的运用

使用API---eqyalizeHist(src[, dst)

示例代码如下:

复制代码
import cv2
import numpy as np
import matplotlib.pyplot as plt
cv2.namedWindow("img", cv2.WINDOW_NORMAL)
cv2.resizeWindow("img", 1290, 480)
lena = cv2.imread("beautiful women.png")
gray = cv2.cvtColor(lena, cv2.COLOR_BGR2GRAY)

# lena变黑
gray_dark = gray - 40
# lena变亮
gray_bright = gray + 40
cv2.imshow("img", np.hstack((gray, gray_dark, gray_bright)))
# 查看各自的直方图
hist_gray = cv2.calcHist([gray], [0], None, [256], [0, 255])
hist_dark = cv2.calcHist([gray_dark], [0], None, [256], [0, 255])
hist_bright = cv2.calcHist([gray_bright], [0], None, [256], [0, 255])
# 画出直方图
plt.plot(hist_gray, label = "gray")
plt.plot(hist_dark, label = "dark")
plt.plot(hist_bright, label = "bright")
plt.legend()
plt.show()
# 进行均衡化处理
dark_equ = cv2.equalizeHist(gray_dark)
bright_equ = cv2.equalizeHist(gray_bright)
# 查看均衡化的直方图
hist_dark_equ = cv2.calcHist([dark_equ], [0], None, [256], [0, 255])
hist_bright_equ = cv2.calcHist([bright_equ], [0], None, [256], [0, 255])
plt.plot(hist_dark_equ, label = "dark_equ")
plt.plot(hist_bright_equ, label = "bright_equ")
plt.legend()
plt.show()
cv2.imshow("gray_dark", np.hstack((gray_dark, dark_equ)))
cv2.imshow("gray_dark", np.hstack((gray_bright, bright_equ)))

cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果如下:

图像均衡化之前:

图像均衡化之后:

直方图均衡化之前:

直方图均衡化之后:

相关推荐
我送炭你添花6 小时前
Pelco KBD300A 模拟器:03.Pelco-P 协议 8 字节完整拆解 + 与 Pelco-D 一一对应终极对照表
python·测试工具·运维开发
It's now6 小时前
Spring AI 基础开发流程
java·人工智能·后端·spring
Glad_R7 小时前
巧用AI流程图,让信息呈现更全面
人工智能·信息可视化·产品运营·流程图·产品经理
R.lin7 小时前
Java 8日期时间API完全指南
java·开发语言·python
西南胶带の池上桜7 小时前
1.Pytorch模型应用(线性与非线性预测)
人工智能·pytorch·python
杀生丸学AI7 小时前
【无标题】VGGT4D:用于4D场景重建的视觉Transformer运动线索挖掘
人工智能·深度学习·3d·aigc·transformer·三维重建·视觉大模型
小和尚同志7 小时前
还在手动配置?这款开源软件让你一键配置 Claude Code 和 Codex
人工智能·aigc
阿正的梦工坊8 小时前
ProRL:延长强化学习训练,扩展大语言模型推理边界——NeurIPS 2025论文解读
人工智能·语言模型·自然语言处理
致Great8 小时前
Ollama 进阶指南
人工智能·gpt·chatgpt·agent·智能体