机器学习入门:使用Python和Scikit-learn实现线性回归

文章标题:机器学习入门:使用Python和Scikit-learn实现线性回归

简介

机器学习是人工智能领域的一个重要分支,它致力于研究如何让计算机通过数据学习,从而实现各种任务。线性回归是机器学习中的一种基本模型,用于预测连续值变量之间的关系。本文将介绍如何使用Python编程语言和Scikit-learn库实现简单的线性回归模型。

1. 准备工作

首先,确保你已经安装了Python和Scikit-learn库。然后,我们需要准备一些数据进行线性回归模型的训练和测试。在这个例子中,我们将使用Scikit-learn库提供的一个示例数据集。

python 复制代码
import numpy as np
from sklearn.datasets import make_regression
import matplotlib.pyplot as plt

# 生成示例数据集
X, y = make_regression(n_samples=100, n_features=1, noise=10, random_state=42)

# 可视化数据集
plt.scatter(X, y)
plt.xlabel('X')
plt.ylabel('y')
plt.title('Linear Regression Data')
plt.show()
2. 构建模型

接下来,我们将使用Scikit-learn库中的线性回归模型来拟合我们的数据。

python 复制代码
from sklearn.linear_model import LinearRegression

# 创建线性回归模型
model = LinearRegression()

# 训练模型
model.fit(X, y)

# 打印模型参数
print("Intercept:", model.intercept_)
print("Coefficients:", model.coef_)
3. 可视化结果

现在,我们可以将模型拟合的直线绘制在数据图上,以便直观地观察拟合效果。

python 复制代码
# 绘制数据图
plt.scatter(X, y)
plt.plot(X, model.predict(X), color='red')
plt.xlabel('X')
plt.ylabel('y')
plt.title('Linear Regression Fit')
plt.show()
结论

通过这个简单的示例,我们学习了如何使用Python和Scikit-learn库实现简单的线性回归模型。线性回归是机器学习中的一个基础模型,但它在实际应用中有着广泛的应用,如房价预测、股票价格预测等。在接下来的文章中,我们将继续探讨机器学习的更多技术和应用。

相关推荐
phoenix@Capricornus41 分钟前
反向传播算法——矩阵形式递推公式——ReLU传递函数
算法·机器学习·矩阵
田梓燊1 小时前
数学复习笔记 19
笔记·线性代数·机器学习
成功人chen某1 小时前
配置VScodePython环境Python was not found;
开发语言·python
2301_786964362 小时前
EXCEL Python 实现绘制柱状线型组合图和树状图(包含数据透视表)
python·microsoft·excel
skd89992 小时前
小蜗牛拨号助手用户使用手册
python
「QT(C++)开发工程师」2 小时前
STM32 | FreeRTOS 递归信号量
python·stm32·嵌入式硬件
史迪仔01122 小时前
[python] Python单例模式:__new__与线程安全解析
开发语言·python·单例模式
胡耀超3 小时前
18.自动化生成知识图谱的多维度质量评估方法论
人工智能·python·自动化·知识图谱·数据科学·逻辑学·质量评估
三块钱07943 小时前
【原创】基于视觉大模型gemma-3-4b实现短视频自动识别内容并生成解说文案
开发语言·python·音视频
神码小Z3 小时前
Ubuntu快速安装Python3.11及多版本管理
python