LeetCode354. Russian Doll Envelopes——动态规划

文章目录

一、题目

You are given a 2D array of integers envelopes where envelopes[i] = [wi, hi] represents the width and the height of an envelope.

One envelope can fit into another if and only if both the width and height of one envelope are greater than the other envelope's width and height.

Return the maximum number of envelopes you can Russian doll (i.e., put one inside the other).

Note: You cannot rotate an envelope.

Example 1:

Input: envelopes = [[5,4],[6,4],[6,7],[2,3]]

Output: 3

Explanation: The maximum number of envelopes you can Russian doll is 3 ([2,3] => [5,4] => [6,7]).

Example 2:

Input: envelopes = [[1,1],[1,1],[1,1]]

Output: 1

Constraints:

1 <= envelopes.length <= 105

envelopes[i].length == 2

1 <= wi, hi <= 105

二、题解

cpp 复制代码
class Solution {
public:
    static bool cmp(vector<int>& e1,vector<int>& e2){
        return e1[0] < e2[0] || (e1[0] == e2[0] && e1[1] > e2[1]);
    }
    int maxEnvelopes(vector<vector<int>>& envelopes) {
        int n = envelopes.size();
        vector<int> ends(n,0);
        int len = 0;
        sort(envelopes.begin(),envelopes.end(),cmp);
        for(int i = 0;i < n;i++){
            int num = envelopes[i][1];
            int index = binarySearch(ends,len,num);
            if(index == -1) ends[len++] = num;
            else ends[index] = num;
        }
        return len;
    }
    int binarySearch(vector<int>& ends,int len,int num){
        int l = 0, r = len - 1,res = -1;
        while(l <= r){
            int mid = (l + r) / 2;
            if(ends[mid] >= num){
                res = mid;
                r = mid - 1;
            }
            else l = mid + 1;
        }
        return res;
    }
};
相关推荐
m0_535064606 小时前
C++模版编程:类模版与继承
java·jvm·c++
今天背单词了吗9806 小时前
算法学习笔记:19.牛顿迭代法——从原理到实战,涵盖 LeetCode 与考研 408 例题
笔记·学习·算法·牛顿迭代法
没书读了6 小时前
考研复习-数据结构-第六章-图
数据结构
jdlxx_dongfangxing7 小时前
进制转换算法详解及应用
算法
Tanecious.7 小时前
C++--红黑树封装实现set和map
网络·c++
why技术8 小时前
也是出息了,业务代码里面也用上算法了。
java·后端·算法
future14128 小时前
C#进阶学习日记
数据结构·学习
2501_922895588 小时前
字符函数和字符串函数(下)- 暴力匹配算法
算法
IT信息技术学习圈9 小时前
算法核心知识复习:排序算法对比 + 递归与递推深度解析(根据GESP四级题目总结)
算法·排序算法
愚润求学10 小时前
【动态规划】01背包问题
c++·算法·leetcode·动态规划