基于CNN-GRU-Attention的时间序列回归预测matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

[4.1 CNN(卷积神经网络)部分](#4.1 CNN(卷积神经网络)部分)

[4.2 GRU(门控循环单元)部分](#4.2 GRU(门控循环单元)部分)

[4.3 Attention机制部分](#4.3 Attention机制部分)

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

3.部分核心程序

复制代码
...................................................................
    
%CNN-GRU-ATT
layers = func_model(Dim);

%设置
%迭代次数
%学习率为0.001
options = trainingOptions('adam', ...       
    'MaxEpochs', 1500, ...                 
    'InitialLearnRate', 1e-4, ...          
    'LearnRateSchedule', 'piecewise', ...  
    'LearnRateDropFactor', 0.1, ...        
    'LearnRateDropPeriod', 1000, ...        
    'Shuffle', 'every-epoch', ...          
    'Plots', 'training-progress', ...     
    'Verbose', false);

%训练
Net = trainNetwork(Nsp_train2, NTsp_train, layers, options);

figure
subplot(211);
plot(1: Num1, Tat_train,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1: Num1, T_sim1,'g',...
    'LineWidth',2,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);

legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
grid on

subplot(212);
plot(1: Num1, Tat_train-T_sim1','-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测误差')
grid on
ylim([-50,50]);



figure
subplot(211);
plot(1: Num2, Tat_test,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1: Num2, T_sim2,'g',...
    'LineWidth',2,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
legend('真实值', '预测值')
xlabel('测试样本')
ylabel('测试结果')
grid on

subplot(212);
plot(1: Num2, Tat_test-T_sim2','-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测误差')
grid on
ylim([-50,50]);
116

4.算法理论概述

CNN-GRU-Attention模型结合了卷积神经网络(CNN)、门控循环单元(GRU)和注意力机制(Attention)来进行时间序列数据的回归预测。CNN用于提取时间序列的局部特征,GRU用于捕获时间序列的长期依赖关系,而注意力机制则用于在预测时强调重要的时间步。

4.1 CNN(卷积神经网络)部分

在时间序列回归任务中,CNN用于捕获局部特征和模式:

4.2 GRU(门控循环单元)部分

GRU用于捕捉时间序列的长期依赖关系:

4.3 Attention机制部分

最后,通过反向传播算法调整所有参数以最小化预测误差,并在整个训练集上迭代优化模型。

5.算法完整程序工程

OOOOO

OOO

O

相关推荐
果冻人工智能4 分钟前
我在大厂做 机器学习工程经理:这六顶帽子,每天都在换
人工智能
萧鼎34 分钟前
RAGFlow:构建高效检索增强生成流程的技术解析
人工智能·python
爱的叹息38 分钟前
主流开源 LLM 应用开发平台详解
人工智能·开源
赋范大模型技术社区40 分钟前
从0手撕代码搭建MCP Client与Server!详解DeepSeek、ollama、vLLM接入MCP实战!
人工智能·mcp
Baihai_IDP1 小时前
面对开源大模型浪潮,基础模型公司如何持续盈利?
人工智能·openai·deepseek
陈明勇1 小时前
MCP 实战:用 Go 语言开发一个查询 IP 信息的 MCP 服务器
人工智能·后端·mcp
浏览器爱好者1 小时前
如何下载适用于语音识别功能增强的Google Chrome浏览器
人工智能·chrome·语音识别
孔令飞1 小时前
彻底学会 gRPC:用 Go 实现一个迷你考试服务
人工智能·云原生·go
梓羽玩Python2 小时前
告别OCR!这个AI文档神器直接"看懂"PDF,支持文档归类及多模态问答!
人工智能·github
weixin_457885822 小时前
Discuz!+DeepSeek:传统论坛的智能化蜕变之路
人工智能·学习·discuz·deepseek