基于CNN-GRU-Attention的时间序列回归预测matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

[4.1 CNN(卷积神经网络)部分](#4.1 CNN(卷积神经网络)部分)

[4.2 GRU(门控循环单元)部分](#4.2 GRU(门控循环单元)部分)

[4.3 Attention机制部分](#4.3 Attention机制部分)

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

3.部分核心程序

复制代码
...................................................................
    
%CNN-GRU-ATT
layers = func_model(Dim);

%设置
%迭代次数
%学习率为0.001
options = trainingOptions('adam', ...       
    'MaxEpochs', 1500, ...                 
    'InitialLearnRate', 1e-4, ...          
    'LearnRateSchedule', 'piecewise', ...  
    'LearnRateDropFactor', 0.1, ...        
    'LearnRateDropPeriod', 1000, ...        
    'Shuffle', 'every-epoch', ...          
    'Plots', 'training-progress', ...     
    'Verbose', false);

%训练
Net = trainNetwork(Nsp_train2, NTsp_train, layers, options);

figure
subplot(211);
plot(1: Num1, Tat_train,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1: Num1, T_sim1,'g',...
    'LineWidth',2,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);

legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
grid on

subplot(212);
plot(1: Num1, Tat_train-T_sim1','-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测误差')
grid on
ylim([-50,50]);



figure
subplot(211);
plot(1: Num2, Tat_test,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1: Num2, T_sim2,'g',...
    'LineWidth',2,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
legend('真实值', '预测值')
xlabel('测试样本')
ylabel('测试结果')
grid on

subplot(212);
plot(1: Num2, Tat_test-T_sim2','-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测误差')
grid on
ylim([-50,50]);
116

4.算法理论概述

CNN-GRU-Attention模型结合了卷积神经网络(CNN)、门控循环单元(GRU)和注意力机制(Attention)来进行时间序列数据的回归预测。CNN用于提取时间序列的局部特征,GRU用于捕获时间序列的长期依赖关系,而注意力机制则用于在预测时强调重要的时间步。

4.1 CNN(卷积神经网络)部分

在时间序列回归任务中,CNN用于捕获局部特征和模式:

4.2 GRU(门控循环单元)部分

GRU用于捕捉时间序列的长期依赖关系:

4.3 Attention机制部分

最后,通过反向传播算法调整所有参数以最小化预测误差,并在整个训练集上迭代优化模型。

5.算法完整程序工程

OOOOO

OOO

O

相关推荐
小小管写大大码20 分钟前
AI重排序API:优化搜索相关性
数据库·人工智能
OG one.Z22 分钟前
07_朴素贝叶斯
人工智能·机器学习
智能相对论1 小时前
把AI装进OS、批量落地智慧服务,智能手机革命2.0来了
人工智能·智能手机
flying_13141 小时前
图神经网络分享系列-GAT(GRAPH ATTENTION NETWORKS) (一)
人工智能·神经网络·图神经网络·注意力机制·gnn·gat·图注意力网络
周末程序猿1 小时前
谈谈 `Claude Skills`
人工智能·ai编程
IT_陈寒2 小时前
5个Vue3性能优化技巧,让你的应用提速50% 🚀(附实测对比)
前端·人工智能·后端
kalvin_y_liu2 小时前
微软Agent Framework
人工智能·microsoft
ximy13352 小时前
AI服务器工作之显卡测试
人工智能
孤独野指针*P2 小时前
深度学习之美》读书笔记 - 第一章 & 第二章
人工智能·深度学习
理不为2 小时前
提示词 prompt 快速上手
人工智能·prompt