代码随想录算法训练营29期Day57|LeetCode 1143,1035,53

文档讲解:最长公共子序列 不相交的线 最大子序和

1143.最长公共子序列

题目链接https://leetcode.cn/problems/longest-common-subsequence/description/

思路:

设dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]。

主要就是两大情况: text1[i - 1] 与 text2[j - 1]相同,text1[i - 1] 与 text2[j - 1]不相同

如果text1[i - 1] 与 text2[j - 1]相同,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1;

如果text1[i - 1] 与 text2[j - 1]不相同,那就看看text1[0, i - 2]与text2[0, j - 1]的最长公共子序列 和 text1[0, i - 1]与text2[0, j - 2]的最长公共子序列,取最大的。

即:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);

先看看dp[i][0]应该是多少呢?

test1[0, i-1]和空串的最长公共子序列自然是0,所以dp[i][0] = 0;

同理dp[0][j]也是0。

核心代码:

cpp 复制代码
class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        vector<vector<int>> dp(text1.size() + 1, vector<int>(text2.size() + 1, 0));
        for (int i = 1; i <= text1.size(); i++) {
            for (int j = 1; j <= text2.size(); j++) {
                if (text1[i - 1] == text2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[text1.size()][text2.size()];
    }
};

1035.不相交的线

题目链接: https://leetcode.cn/problems/uncrossed-lines/description/

思路:

本题说是求绘制的最大连线数,其实就是求两个字符串的最长公共子序列的长度!

所以照着上道题做就行了。

核心代码:

cpp 复制代码
class Solution {
public:
    int maxUncrossedLines(vector<int>& A, vector<int>& B) {
        vector<vector<int>> dp(A.size() + 1, vector<int>(B.size() + 1, 0));
        for (int i = 1; i <= A.size(); i++) {
            for (int j = 1; j <= B.size(); j++) {
                if (A[i - 1] == B[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[A.size()][B.size()];
    }
};

53.最大子序和

题目链接: https://leetcode.cn/problems/maximum-subarray/description/

思路:

dp[i]:包括下标i(以nums[i]为结尾)的最大连续子序列和为dp[i]

dp[i]只有两个方向可以推出来:

dp[i - 1] + nums[i],即:nums[i]加入当前连续子序列和

nums[i],即:从头开始计算当前连续子序列和

一定是取最大的,所以dp[i] = max(dp[i - 1] + nums[i], nums[i]);

从递推公式可以看出来dp[i]是依赖于dp[i - 1]的状态,dp[0]就是递推公式的基础。

根据dp[i]的定义,很明显dp[0]应为nums[0],即dp[0] = nums[0]。

我们要找最大的连续子序列,找每一个i为终点的连续最大子序列即可。

核心代码:

cpp 复制代码
class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        if (nums.size() == 0) return 0;
        vector<int> dp(nums.size());
        dp[0] = nums[0];
        int result = dp[0];
        for (int i = 1; i < nums.size(); i++) {
            dp[i] = max(dp[i - 1] + nums[i], nums[i]); // 状态转移公式
            if (dp[i] > result) result = dp[i]; // result 保存dp[i]的最大值
        }
        return result;
    }
};

今日总结

这次的题学习时长1h,以前做过类似的。

快返校了,接着论文idea,头大。

相关推荐
Georgewu3 小时前
【AI大模型入门指南】提示词Prompt工程详解
算法·aigc·ai编程
ZackSock9 小时前
Policy Gradient 极简教程
算法
Big_Yellow_J9 小时前
深入浅出了解生成模型-3:Diffusion模型原理以及代码
算法·面试
用户6869161349010 小时前
哈希表实现指南:从原理到C++实践
数据结构·c++
ZackSock10 小时前
从零实现 RAG
算法
Jolyne_10 小时前
前端常用的树处理方法总结
前端·算法·面试
大老板a11 小时前
c++五分钟搞定异步处理
c++
前端付豪13 小时前
微信视频号推荐系统揭秘:兴趣建模、多模态分析与亿级流控架构实战
前端·后端·算法
木杉苑13 小时前
快速幂算法
算法
羑悻的小杀马特15 小时前
从信息孤岛到智能星云:学习助手编织高校学习生活的全维度互联网络
c++·学习·生活·api