代码随想录算法训练营29期Day57|LeetCode 1143,1035,53

文档讲解:最长公共子序列 不相交的线 最大子序和

1143.最长公共子序列

题目链接https://leetcode.cn/problems/longest-common-subsequence/description/

思路:

设dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]。

主要就是两大情况: text1[i - 1] 与 text2[j - 1]相同,text1[i - 1] 与 text2[j - 1]不相同

如果text1[i - 1] 与 text2[j - 1]相同,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1;

如果text1[i - 1] 与 text2[j - 1]不相同,那就看看text1[0, i - 2]与text2[0, j - 1]的最长公共子序列 和 text1[0, i - 1]与text2[0, j - 2]的最长公共子序列,取最大的。

即:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);

先看看dp[i][0]应该是多少呢?

test1[0, i-1]和空串的最长公共子序列自然是0,所以dp[i][0] = 0;

同理dp[0][j]也是0。

核心代码:

cpp 复制代码
class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        vector<vector<int>> dp(text1.size() + 1, vector<int>(text2.size() + 1, 0));
        for (int i = 1; i <= text1.size(); i++) {
            for (int j = 1; j <= text2.size(); j++) {
                if (text1[i - 1] == text2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[text1.size()][text2.size()];
    }
};

1035.不相交的线

题目链接: https://leetcode.cn/problems/uncrossed-lines/description/

思路:

本题说是求绘制的最大连线数,其实就是求两个字符串的最长公共子序列的长度!

所以照着上道题做就行了。

核心代码:

cpp 复制代码
class Solution {
public:
    int maxUncrossedLines(vector<int>& A, vector<int>& B) {
        vector<vector<int>> dp(A.size() + 1, vector<int>(B.size() + 1, 0));
        for (int i = 1; i <= A.size(); i++) {
            for (int j = 1; j <= B.size(); j++) {
                if (A[i - 1] == B[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[A.size()][B.size()];
    }
};

53.最大子序和

题目链接: https://leetcode.cn/problems/maximum-subarray/description/

思路:

dp[i]:包括下标i(以nums[i]为结尾)的最大连续子序列和为dp[i]

dp[i]只有两个方向可以推出来:

dp[i - 1] + nums[i],即:nums[i]加入当前连续子序列和

nums[i],即:从头开始计算当前连续子序列和

一定是取最大的,所以dp[i] = max(dp[i - 1] + nums[i], nums[i]);

从递推公式可以看出来dp[i]是依赖于dp[i - 1]的状态,dp[0]就是递推公式的基础。

根据dp[i]的定义,很明显dp[0]应为nums[0],即dp[0] = nums[0]。

我们要找最大的连续子序列,找每一个i为终点的连续最大子序列即可。

核心代码:

cpp 复制代码
class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        if (nums.size() == 0) return 0;
        vector<int> dp(nums.size());
        dp[0] = nums[0];
        int result = dp[0];
        for (int i = 1; i < nums.size(); i++) {
            dp[i] = max(dp[i - 1] + nums[i], nums[i]); // 状态转移公式
            if (dp[i] > result) result = dp[i]; // result 保存dp[i]的最大值
        }
        return result;
    }
};

今日总结

这次的题学习时长1h,以前做过类似的。

快返校了,接着论文idea,头大。

相关推荐
嘴贱欠吻!1 小时前
Flutter鸿蒙开发指南(七):轮播图搜索框和导航栏
算法·flutter·图搜索算法
张祥6422889041 小时前
误差理论与测量平差基础笔记十
笔记·算法·机器学习
踩坑记录1 小时前
leetcode hot100 2.两数相加 链表 medium
leetcode·链表
qq_192779872 小时前
C++模块化编程指南
开发语言·c++·算法
代码村新手2 小时前
C++-String
开发语言·c++
cici158743 小时前
大规模MIMO系统中Alamouti预编码的QPSK复用性能MATLAB仿真
算法·matlab·预编码算法
历程里程碑4 小时前
滑动窗口---- 无重复字符的最长子串
java·数据结构·c++·python·算法·leetcode·django
2501_940315265 小时前
航电oj:首字母变大写
开发语言·c++·算法
lhxcc_fly5 小时前
手撕简易版的智能指针
c++·智能指针实现
CodeByV5 小时前
【算法题】多源BFS
算法