代码随想录算法训练营29期Day57|LeetCode 1143,1035,53

文档讲解:最长公共子序列 不相交的线 最大子序和

1143.最长公共子序列

题目链接https://leetcode.cn/problems/longest-common-subsequence/description/

思路:

设dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]。

主要就是两大情况: text1[i - 1] 与 text2[j - 1]相同,text1[i - 1] 与 text2[j - 1]不相同

如果text1[i - 1] 与 text2[j - 1]相同,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1;

如果text1[i - 1] 与 text2[j - 1]不相同,那就看看text1[0, i - 2]与text2[0, j - 1]的最长公共子序列 和 text1[0, i - 1]与text2[0, j - 2]的最长公共子序列,取最大的。

即:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);

先看看dp[i][0]应该是多少呢?

test1[0, i-1]和空串的最长公共子序列自然是0,所以dp[i][0] = 0;

同理dp[0][j]也是0。

核心代码:

cpp 复制代码
class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        vector<vector<int>> dp(text1.size() + 1, vector<int>(text2.size() + 1, 0));
        for (int i = 1; i <= text1.size(); i++) {
            for (int j = 1; j <= text2.size(); j++) {
                if (text1[i - 1] == text2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[text1.size()][text2.size()];
    }
};

1035.不相交的线

题目链接: https://leetcode.cn/problems/uncrossed-lines/description/

思路:

本题说是求绘制的最大连线数,其实就是求两个字符串的最长公共子序列的长度!

所以照着上道题做就行了。

核心代码:

cpp 复制代码
class Solution {
public:
    int maxUncrossedLines(vector<int>& A, vector<int>& B) {
        vector<vector<int>> dp(A.size() + 1, vector<int>(B.size() + 1, 0));
        for (int i = 1; i <= A.size(); i++) {
            for (int j = 1; j <= B.size(); j++) {
                if (A[i - 1] == B[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[A.size()][B.size()];
    }
};

53.最大子序和

题目链接: https://leetcode.cn/problems/maximum-subarray/description/

思路:

dp[i]:包括下标i(以nums[i]为结尾)的最大连续子序列和为dp[i]

dp[i]只有两个方向可以推出来:

dp[i - 1] + nums[i],即:nums[i]加入当前连续子序列和

nums[i],即:从头开始计算当前连续子序列和

一定是取最大的,所以dp[i] = max(dp[i - 1] + nums[i], nums[i]);

从递推公式可以看出来dp[i]是依赖于dp[i - 1]的状态,dp[0]就是递推公式的基础。

根据dp[i]的定义,很明显dp[0]应为nums[0],即dp[0] = nums[0]。

我们要找最大的连续子序列,找每一个i为终点的连续最大子序列即可。

核心代码:

cpp 复制代码
class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        if (nums.size() == 0) return 0;
        vector<int> dp(nums.size());
        dp[0] = nums[0];
        int result = dp[0];
        for (int i = 1; i < nums.size(); i++) {
            dp[i] = max(dp[i - 1] + nums[i], nums[i]); // 状态转移公式
            if (dp[i] > result) result = dp[i]; // result 保存dp[i]的最大值
        }
        return result;
    }
};

今日总结

这次的题学习时长1h,以前做过类似的。

快返校了,接着论文idea,头大。

相关推荐
派大星爱吃猫2 分钟前
C++隐藏的this指针(详解)
c++·this指针
虾..13 分钟前
C++ 哈希
开发语言·c++·哈希算法
循环过三天17 分钟前
3.1、Python-列表
python·算法
liu****23 分钟前
14.日志封装和线程池封装
linux·开发语言·c++
将编程培养成爱好29 分钟前
C++ 设计模式《统计辅助功能》
开发语言·c++·设计模式·访问者模式
dragoooon341 小时前
[优选算法专题六.模拟 ——NO.40~41 外观数列、数青蛙]
数据结构·算法·leetcode
徐新帅1 小时前
CCF-GESP 等级考试 2025年3月认证C++一级真题解析
算法
陌路202 小时前
S16 排序算法--堆排序
算法·排序算法
烛衔溟2 小时前
C语言算法:排序算法入门
c语言·算法·排序算法·插入排序·冒泡排序·选择排序·多关键字排序
一匹电信狗2 小时前
【C++】封装红黑树实现map和set容器(详解)
服务器·c++·算法·leetcode·小程序·stl·visual studio