代码随想录算法训练营29期Day57|LeetCode 1143,1035,53

文档讲解:最长公共子序列 不相交的线 最大子序和

1143.最长公共子序列

题目链接https://leetcode.cn/problems/longest-common-subsequence/description/

思路:

设dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]。

主要就是两大情况: text1[i - 1] 与 text2[j - 1]相同,text1[i - 1] 与 text2[j - 1]不相同

如果text1[i - 1] 与 text2[j - 1]相同,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1;

如果text1[i - 1] 与 text2[j - 1]不相同,那就看看text1[0, i - 2]与text2[0, j - 1]的最长公共子序列 和 text1[0, i - 1]与text2[0, j - 2]的最长公共子序列,取最大的。

即:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);

先看看dp[i][0]应该是多少呢?

test1[0, i-1]和空串的最长公共子序列自然是0,所以dp[i][0] = 0;

同理dp[0][j]也是0。

核心代码:

cpp 复制代码
class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        vector<vector<int>> dp(text1.size() + 1, vector<int>(text2.size() + 1, 0));
        for (int i = 1; i <= text1.size(); i++) {
            for (int j = 1; j <= text2.size(); j++) {
                if (text1[i - 1] == text2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[text1.size()][text2.size()];
    }
};

1035.不相交的线

题目链接: https://leetcode.cn/problems/uncrossed-lines/description/

思路:

本题说是求绘制的最大连线数,其实就是求两个字符串的最长公共子序列的长度!

所以照着上道题做就行了。

核心代码:

cpp 复制代码
class Solution {
public:
    int maxUncrossedLines(vector<int>& A, vector<int>& B) {
        vector<vector<int>> dp(A.size() + 1, vector<int>(B.size() + 1, 0));
        for (int i = 1; i <= A.size(); i++) {
            for (int j = 1; j <= B.size(); j++) {
                if (A[i - 1] == B[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[A.size()][B.size()];
    }
};

53.最大子序和

题目链接: https://leetcode.cn/problems/maximum-subarray/description/

思路:

dp[i]:包括下标i(以nums[i]为结尾)的最大连续子序列和为dp[i]

dp[i]只有两个方向可以推出来:

dp[i - 1] + nums[i],即:nums[i]加入当前连续子序列和

nums[i],即:从头开始计算当前连续子序列和

一定是取最大的,所以dp[i] = max(dp[i - 1] + nums[i], nums[i]);

从递推公式可以看出来dp[i]是依赖于dp[i - 1]的状态,dp[0]就是递推公式的基础。

根据dp[i]的定义,很明显dp[0]应为nums[0],即dp[0] = nums[0]。

我们要找最大的连续子序列,找每一个i为终点的连续最大子序列即可。

核心代码:

cpp 复制代码
class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        if (nums.size() == 0) return 0;
        vector<int> dp(nums.size());
        dp[0] = nums[0];
        int result = dp[0];
        for (int i = 1; i < nums.size(); i++) {
            dp[i] = max(dp[i - 1] + nums[i], nums[i]); // 状态转移公式
            if (dp[i] > result) result = dp[i]; // result 保存dp[i]的最大值
        }
        return result;
    }
};

今日总结

这次的题学习时长1h,以前做过类似的。

快返校了,接着论文idea,头大。

相关推荐
小小8程序员1 分钟前
STL 库(C++ Standard Template Library)全面介绍
java·开发语言·c++
立志成为大牛的小牛1 分钟前
数据结构——五十六、排序的基本概念(王道408)
开发语言·数据结构·程序人生·算法
老王熬夜敲代码21 分钟前
C++中的atomic
开发语言·c++·笔记·面试
沿着路走到底43 分钟前
将数组倒序,不能采用reverse,算法复杂度最低
算法
IDIOT___IDIOT1 小时前
KNN and K-means 监督与非监督学习
学习·算法·kmeans
a努力。1 小时前
腾讯Java面试被问:String、StringBuffer、StringBuilder区别
java·开发语言·后端·面试·职场和发展·架构
Hcoco_me1 小时前
大模型面试题18:t-SNE算法详解及入门实操
算法
Data_agent2 小时前
学术爬虫实战:构建知网论文关键词共现网络的技术指南
python·算法
龚礼鹏2 小时前
Android应用程序 c/c++ 崩溃排查流程
c语言·开发语言·c++