leetcode单调栈

739. 每日温度

请根据每日 气温 列表,重新生成一个列表。对应位置的输出为:要想观测到更高的气温,至少需要等待的天数。如果气温在这之后都不会升高,请在该位置用 0 来代替。

例如,给定一个列表 temperatures = [73, 74, 75, 71, 69, 72, 76, 73],你的输出应该是 [1, 1, 4, 2, 1, 1, 0, 0]。

提示:气温 列表长度的范围是 [1, 30000]。每个气温的值的均为华氏度,都是在 [30, 100] 范围内的整数

python 复制代码
class Solution:
    def dailyTemperatures(self, temperatures: List[int]) -> List[int]:
        answer = [0]*len(temperatures)
        stack = [0]
        for i in range(1,len(temperatures)):
            # 情况一和情况二
            if temperatures[i]<=temperatures[stack[-1]]:
                stack.append(i)
            # 情况三
            else:
                while len(stack) != 0 and temperatures[i]>temperatures[stack[-1]]:
                    answer[stack[-1]]=i-stack[-1]
                    stack.pop()
                stack.append(i)

        return answer

496.下一个更大元素 I

给你两个 没有重复元素 的数组 nums1 和 nums2 ,其中nums1 是 nums2 的子集。

请你找出 nums1 中每个元素在 nums2 中的下一个比其大的值。

nums1 中数字 x 的下一个更大元素是指 x 在 nums2 中对应位置的右边的第一个比 x 大的元素。如果不存在,对应位置输出 -1 。

示例 1:

输入: nums1 = [4,1,2], nums2 = [1,3,4,2].

输出: [-1,3,-1]

解释:

对于 num1 中的数字 4 ,你无法在第二个数组中找到下一个更大的数字,因此输出 -1 。

对于 num1 中的数字 1 ,第二个数组中数字1右边的下一个较大数字是 3 。

对于 num1 中的数字 2 ,第二个数组中没有下一个更大的数字,因此输出 -1 。

示例 2:

输入: nums1 = [2,4], nums2 = [1,2,3,4].

输出: [3,-1]

解释:

对于 num1 中的数字 2 ,第二个数组中的下一个较大数字是 3 。

对于 num1 中的数字 4 ,第二个数组中没有下一个更大的数字,因此输出-1 。

提示:

1 <= nums1.length <= nums2.length <= 1000

0 <= nums1[i], nums2[i] <= 10^4

nums1和nums2中所有整数 互不相同

nums1 中的所有整数同样出现在 nums2 中

python 复制代码
class Solution:
    def nextGreaterElement(self, nums1: List[int], nums2: List[int]) -> List[int]:
        result = [-1]*len(nums1)
        stack = [0]
        for i in range(1,len(nums2)):
            # 情况一情况二
            if nums2[i]<=nums2[stack[-1]]:
                stack.append(i)
            # 情况三
            else:
                while len(stack)!=0 and nums2[i]>nums2[stack[-1]]:
                    if nums2[stack[-1]] in nums1:
                        index = nums1.index(nums2[stack[-1]])
                        result[index]=nums2[i]
                    stack.pop()                 
                stack.append(i)
        return result

503.下一个更大元素II

给定一个循环数组(最后一个元素的下一个元素是数组的第一个元素),输出每个元素的下一个更大元素。数字 x 的下一个更大的元素是按数组遍历顺序,这个数字之后的第一个比它更大的数,这意味着你应该循环地搜索它的下一个更大的数。如果不存在,则输出 -1。

示例 1:

输入: [1,2,1]

输出: [2,-1,2]

解释: 第一个 1 的下一个更大的数是 2;数字 2 找不到下一个更大的数;第二个 1 的下一个最大的数需要循环搜索,结果也是 2。

提示:

1 <= nums.length <= 10^4

-10^9 <= nums[i] <= 10^9

python 复制代码
# 方法 1:
class Solution:
    def nextGreaterElements(self, nums: List[int]) -> List[int]:
        dp = [-1] * len(nums)
        stack = []
        for i in range(len(nums)*2):
            while(len(stack) != 0 and nums[i%len(nums)] > nums[stack[-1]]):
                    dp[stack[-1]] = nums[i%len(nums)]
                    stack.pop()
            stack.append(i%len(nums))
        return dp

# 方法 2:
class Solution:
    def nextGreaterElement(self, nums1: List[int], nums2: List[int]) -> List[int]:
        stack = []
        # 创建答案数组
        ans = [-1] * len(nums1)
        for i in range(len(nums2)):
            while len(stack) > 0 and nums2[i] > nums2[stack[-1]]:
                # 判断 num1 是否有 nums2[stack[-1]]。如果没有这个判断会出现指针异常
                if nums2[stack[-1]] in nums1:
                    # 锁定 num1 检索的 index
                    index = nums1.index(nums2[stack[-1]])
                    # 更新答案数组
                    ans[index] = nums2[i]
                # 弹出小元素
                # 这个代码一定要放在 if 外面。否则单调栈的逻辑就不成立了
                stack.pop()
            stack.append(i)
        return ans

2. 接雨水

力扣题目链接(opens new window)

给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。

示例 1:

输入:height = [0,1,0,2,1,0,1,3,2,1,2,1]

输出:6

解释:上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水)。

示例 2:

输入:height = [4,2,0,3,2,5]

输出:9

python 复制代码
暴力解法:
class Solution:
    def trap(self, height: List[int]) -> int:
        res = 0
        for i in range(len(height)):
            if i == 0 or i == len(height)-1: continue
            lHight = height[i-1]
            rHight = height[i+1]
            for j in range(i-1):
                if height[j] > lHight:
                    lHight = height[j]
            for k in range(i+2,len(height)):
                if height[k] > rHight:
                    rHight = height[k]
            res1 = min(lHight,rHight) - height[i]
            if res1 > 0:
                res += res1
        return res

双指针:
class Solution:
    def trap(self, height: List[int]) -> int:
        leftheight, rightheight = [0]*len(height), [0]*len(height)

        leftheight[0]=height[0]
        for i in range(1,len(height)):
            leftheight[i]=max(leftheight[i-1],height[i])
        rightheight[-1]=height[-1]
        for i in range(len(height)-2,-1,-1):
            rightheight[i]=max(rightheight[i+1],height[i])

        result = 0
        for i in range(0,len(height)):
            summ = min(leftheight[i],rightheight[i])-height[i]
            result += summ
        return result

单调栈
class Solution:
    def trap(self, height: List[int]) -> int:
        # 单调栈
        '''
        单调栈是按照 行 的方向来计算雨水
        从栈顶到栈底的顺序:从小到大
        通过三个元素来接水:栈顶,栈顶的下一个元素,以及即将入栈的元素
        雨水高度是 min(凹槽左边高度, 凹槽右边高度) - 凹槽底部高度
        雨水的宽度是 凹槽右边的下标 - 凹槽左边的下标 - 1(因为只求中间宽度)
        '''
        # stack储存index,用于计算对应的柱子高度
        stack = [0]
        result = 0
        for i in range(1, len(height)):
            # 情况一
            if height[i] < height[stack[-1]]:
                stack.append(i)

            # 情况二
            # 当当前柱子高度和栈顶一致时,左边的一个是不可能存放雨水的,所以保留右侧新柱子
            # 需要使用最右边的柱子来计算宽度
            elif height[i] == height[stack[-1]]:
                stack.pop()
                stack.append(i)

            # 情况三
            else:
                # 抛出所有较低的柱子
                while stack and height[i] > height[stack[-1]]:
                    # 栈顶就是中间的柱子:储水槽,就是凹槽的地步
                    mid_height = height[stack[-1]]
                    stack.pop()
                    if stack:
                        right_height = height[i]
                        left_height = height[stack[-1]]
                        # 两侧的较矮一方的高度 - 凹槽底部高度
                        h = min(right_height, left_height) - mid_height
                        # 凹槽右侧下标 - 凹槽左侧下标 - 1: 只求中间宽度
                        w = i - stack[-1] - 1
                        # 体积:高乘宽
                        result += h * w
                stack.append(i)
        return result

# 单调栈压缩版
class Solution:
    def trap(self, height: List[int]) -> int:
        stack = [0]
        result = 0
        for i in range(1, len(height)):
            while stack and height[i] > height[stack[-1]]:
                mid_height = stack.pop()
                if stack:
                    # 雨水高度是 min(凹槽左侧高度, 凹槽右侧高度) - 凹槽底部高度
                    h = min(height[stack[-1]], height[i]) - height[mid_height]
                    # 雨水宽度是 凹槽右侧的下标 - 凹槽左侧的下标 - 1
                    w = i - stack[-1] - 1
                    # 累计总雨水体积
                    result += h * w
            stack.append(i)
        return result

84.柱状图中最大的矩形

力扣题目链接(opens new window)

给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。

求在该柱状图中,能够勾勒出来的矩形的最大面积。

1 <= heights.length <=10^5

0 <= heights[i] <= 10^4

python 复制代码
# 暴力解法(leetcode超时)
class Solution:
    def largestRectangleArea(self, heights: List[int]) -> int:
        # 从左向右遍历:以每一根柱子为主心骨(当前轮最高的参照物),迭代直到找到左侧和右侧各第一个矮一级的柱子
        res = 0

        for i in range(len(heights)):
            left = i
            right = i
            # 向左侧遍历:寻找第一个矮一级的柱子
            for _ in range(left, -1, -1):
                if heights[left] < heights[i]:
                    break
                left -= 1
            # 向右侧遍历:寻找第一个矮一级的柱子
            for _ in range(right, len(heights)):
                if heights[right] < heights[i]:
                    break
                right += 1
                
            width = right - left - 1
            height = heights[i]
            res = max(res, width * height)

        return res

# 双指针 
class Solution:
    def largestRectangleArea(self, heights: List[int]) -> int:
        size = len(heights)
        # 两个DP数列储存的均是下标index
        min_left_index = [0] * size
        min_right_index = [0] * size
        result = 0

        # 记录每个柱子的左侧第一个矮一级的柱子的下标
        min_left_index[0] = -1  # 初始化防止while死循环
        for i in range(1, size):
            # 以当前柱子为主心骨,向左迭代寻找次级柱子
            temp = i - 1
            while temp >= 0 and heights[temp] >= heights[i]:
                # 当左侧的柱子持续较高时,尝试这个高柱子自己的次级柱子(DP
                temp = min_left_index[temp]
            # 当找到左侧矮一级的目标柱子时
            min_left_index[i] = temp
        
        # 记录每个柱子的右侧第一个矮一级的柱子的下标
        min_right_index[size-1] = size  # 初始化防止while死循环
        for i in range(size-2, -1, -1):
            # 以当前柱子为主心骨,向右迭代寻找次级柱子
            temp = i + 1
            while temp < size and heights[temp] >= heights[i]:
                # 当右侧的柱子持续较高时,尝试这个高柱子自己的次级柱子(DP
                temp = min_right_index[temp]
            # 当找到右侧矮一级的目标柱子时
            min_right_index[i] = temp
        
        for i in range(size):
            area = heights[i] * (min_right_index[i] - min_left_index[i] - 1)
            result = max(area, result)
        
        return result

# 单调栈
class Solution:
    def largestRectangleArea(self, heights: List[int]) -> int:
        # Monotonic Stack
        '''
        找每个柱子左右侧的第一个高度值小于该柱子的柱子
        单调栈:栈顶到栈底:从大到小(每插入一个新的小数值时,都要弹出先前的大数值)
        栈顶,栈顶的下一个元素,即将入栈的元素:这三个元素组成了最大面积的高度和宽度
        情况一:当前遍历的元素heights[i]大于栈顶元素的情况
        情况二:当前遍历的元素heights[i]等于栈顶元素的情况
        情况三:当前遍历的元素heights[i]小于栈顶元素的情况
        '''

        # 输入数组首尾各补上一个0(与42.接雨水不同的是,本题原首尾的两个柱子可以作为核心柱进行最大面积尝试
        heights.insert(0, 0)
        heights.append(0)
        stack = [0]
        result = 0
        for i in range(1, len(heights)):
            # 情况一
            if heights[i] > heights[stack[-1]]:
                stack.append(i)
            # 情况二
            elif heights[i] == heights[stack[-1]]:
                stack.pop()
                stack.append(i)
            # 情况三
            else:
                # 抛出所有较高的柱子
                while stack and heights[i] < heights[stack[-1]]:
                    # 栈顶就是中间的柱子,主心骨
                    mid_index = stack[-1]
                    stack.pop()
                    if stack:
                        left_index = stack[-1]
                        right_index = i
                        width = right_index - left_index - 1
                        height = heights[mid_index]
                        result = max(result, width * height)
                stack.append(i)
        return result

# 单调栈精简
class Solution:
    def largestRectangleArea(self, heights: List[int]) -> int:
        heights.insert(0, 0)
        heights.append(0)
        stack = [0]
        result = 0
        for i in range(1, len(heights)):
            while stack and heights[i] < heights[stack[-1]]:
                mid_height = heights[stack[-1]]
                stack.pop()
                if stack:
                    # area = width * height
                    area = (i - stack[-1] - 1) * mid_height
                    result = max(area, result)
            stack.append(i)
        return result
相关推荐
Coovally AI模型快速验证26 分钟前
MMYOLO:打破单一模式限制,多模态目标检测的革命性突破!
人工智能·算法·yolo·目标检测·机器学习·计算机视觉·目标跟踪
可为测控1 小时前
图像处理基础(4):高斯滤波器详解
人工智能·算法·计算机视觉
Milk夜雨1 小时前
头歌实训作业 算法设计与分析-贪心算法(第3关:活动安排问题)
算法·贪心算法
BoBoo文睡不醒2 小时前
动态规划(DP)(细致讲解+例题分析)
算法·动态规划
apz_end2 小时前
埃氏算法C++实现: 快速输出质数( 素数 )
开发语言·c++·算法·埃氏算法
仟濹3 小时前
【贪心算法】洛谷P1106 - 删数问题
c语言·c++·算法·贪心算法
银河梦想家3 小时前
【Day23 LeetCode】贪心算法题
leetcode·贪心算法
CM莫问4 小时前
python实战(十五)——中文手写体数字图像CNN分类
人工智能·python·深度学习·算法·cnn·图像分类·手写体识别
sz66cm4 小时前
LeetCode刷题 -- 45.跳跃游戏 II
算法·leetcode
Amor风信子4 小时前
华为OD机试真题---战场索敌
java·开发语言·算法·华为od·华为