LeetCode 1038.从二叉搜索树到更大和树

给定一个二叉搜索树 root (BST),请将它的每个节点的值替换成树中大于或者等于该节点值的所有节点值之和。

提醒一下, 二叉搜索树 满足下列约束条件:

节点的左子树仅包含键 小于 节点键的节点。

节点的右子树仅包含键 大于 节点键的节点。

左右子树也必须是二叉搜索树。

示例 1:

输入:[4,1,6,0,2,5,7,null,null,null,3,null,null,null,8]

输出:[30,36,21,36,35,26,15,null,null,null,33,null,null,null,8]

示例 2:

输入:root = [0,null,1]

输出:[1,null,1]

提示:

树中的节点数在 [1, 100] 范围内。

0 <= Node.val <= 100

树中的所有值均 不重复 。

法一:反向中序遍历即可,用一个变量记录累加和,以下是递归遍历:

cpp 复制代码
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    TreeNode* bstToGst(TreeNode* root) {
        int sum = 0;
        reverseInorderTraversal(root, sum);

        return root;
    }

private:
    void reverseInorderTraversal(TreeNode *node, int &sum)
    {
        if (node == nullptr)
        {
            return;
        }

        reverseInorderTraversal(node->right, sum);
        sum += node->val;
        node->val = sum;
        reverseInorderTraversal(node->left, sum);
    }
};

如果树中有n个节点,此算法时间复杂度为O(n),空间复杂度为树的高度O(logn)(平均情况,最差情况为O(n))。

法二:法一的迭代版:

cpp 复制代码
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    TreeNode* bstToGst(TreeNode* root) {
        stack<TreeNode *> s;
        int sum = 0;
        TreeNode *cur = root;
        while (cur || !s.empty())
        {
            while (cur)
            {
                s.push(cur);
                cur = cur->right;
            }
            cur = s.top();
            s.pop();

            sum += cur->val;
            cur->val = sum;

            cur = cur->left;
        }

        return root;
    }
};

如果树中有n个节点,此算法时间复杂度为O(n),空间复杂度为树的高度O(logn)(平均情况,最差情况为O(n))。

法三:Morris遍历,要点在于找到当前节点的前驱节点,对于反向中序遍历,某节点的前驱节点是右子树的最左节点:

cpp 复制代码
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    TreeNode* bstToGst(TreeNode* root) {
        int sum = 0;
        TreeNode *cur = root;
        while (cur)
        {
            if (!cur->right)
            {
                sum += cur->val;
                cur->val = sum;

                cur = cur->left;
                continue;
            }

            TreeNode *leftestOfRight = getLeftestOfRight(cur);
            if (leftestOfRight->left)
            {
                sum += cur->val;
                cur->val = sum;

                leftestOfRight->left = nullptr;
                cur = cur->left;
            }
            else
            {
                leftestOfRight->left = cur;
                cur = cur->right;
            }
        }

        return root;
    }

private:
    TreeNode *getLeftestOfRight(TreeNode *node)
    {
        TreeNode *cur = node->right;
        while (cur->left && cur->left != node)
        {
            cur = cur->left;
        }

        return cur;
    }
};

如果树中有n个节点,此算法时间复杂度为O(n),空间复杂度为O(1)。

法四:由于输入的是二叉搜索树,因此我们可以每次找到比当前值小的前一个节点,依次更新:

cpp 复制代码
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    TreeNode* bstToGst(TreeNode* root) {
        TreeNode *curTarget = getMax(root);
        int sum = 0;
        int lastNum = curTarget->val;
        while (curTarget)
        {
            lastNum = curTarget->val;
            sum += curTarget->val;
            curTarget->val = sum;

            curTarget = getLess(root, lastNum);
        }

        return root;
    }

private:
    TreeNode *getMax(TreeNode *node)
    {
        while (node->right)
        {
            node = node->right;
        }

        return node;
    }

    TreeNode *getLess(TreeNode *root, int target)
    {
        TreeNode *lessTarget = nullptr;
        while (root)
        {
            if (root->val > target)
            {
                root = root->left;
            }
            else if (root->val < target)
            {
                if (!lessTarget || root->val > lessTarget->val)
                {
                    lessTarget = root;
                }
                root = root->right;
            }
            else
            {
                break;
            }
        }

        return lessTarget;
    }
};

如果树中有n个节点,此算法时间复杂度为O(nlgn),空间复杂度为O(1)。

相关推荐
Amor风信子15 分钟前
华为OD机试真题---跳房子II
java·数据结构·算法
戊子仲秋32 分钟前
【LeetCode】每日一题 2024_10_2 准时到达的列车最小时速(二分答案)
算法·leetcode·职场和发展
邓校长的编程课堂34 分钟前
助力信息学奥赛-VisuAlgo:提升编程与算法学习的可视化工具
学习·算法
sp_fyf_20241 小时前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-03
人工智能·算法·机器学习·计算机视觉·语言模型·自然语言处理
Eric.Lee20211 小时前
数据集-目标检测系列- 螃蟹 检测数据集 crab >> DataBall
python·深度学习·算法·目标检测·计算机视觉·数据集·螃蟹检测
夜流冰2 小时前
工具方法 - 面试中回答问题的技巧
面试·职场和发展
林辞忧2 小时前
算法修炼之路之滑动窗口
算法
￴ㅤ￴￴ㅤ9527超级帅2 小时前
LeetCode hot100---二叉树专题(C++语言)
c++·算法·leetcode
liuyang-neu2 小时前
力扣 简单 110.平衡二叉树
java·算法·leetcode·深度优先
一个不知名程序员www2 小时前
leetcode面试题17.04:消失的数字(C语言版)
leetcode