【大数据】Flink SQL 语法篇(四):Group 聚合

  • 1.基础概念
  • [2.窗口聚合和 Group 聚合](#2.窗口聚合和 Group 聚合)
  • [3.SQL 语义](#3.SQL 语义)
  • [4.Group 聚合支持 Grouping sets、Rollup、Cube](#4.Group 聚合支持 Grouping sets、Rollup、Cube)

1.基础概念

Group 聚合定义(支持 Batch / Streaming 任务):Flink 也支持 Group 聚合。Group 聚合和上面介绍到的窗口聚合的不同之处,就在于 Group 聚合是按照数据的类别进行分组,比如年龄、性别,是横向的;而窗口聚合是在时间粒度上对数据进行分组,是纵向的。如下图所示,就展示出了其区别。其中 **按颜色分 key(横向)**就是 Group 聚合,**按窗口划分(纵向)**就是 窗口聚合

2.窗口聚合和 Group 聚合

应用场景 :一般用于对数据进行分组,然后后续使用聚合函数进行 countsum 等聚合操作。

那么这时候,小伙伴萌就会问到,我其实可以把窗口聚合的写法也转换为 Group 聚合,只需要把 Group 聚合的 Group By key 换成时间就行,那这两个聚合的区别到底在哪?

首先来举一个例子看看怎么将 窗口聚合 转换为 Group 聚合。假如一个窗口聚合是按照 1 1 1 分钟的粒度进行聚合,如下 滚动窗口 SQL:

sql 复制代码
-- 数据源表
CREATE TABLE source_table (
    -- 维度数据
    dim STRING,
    -- 用户 id
    user_id BIGINT,
    -- 用户
    price BIGINT,
    -- 事件时间戳
    row_time AS cast(CURRENT_TIMESTAMP as timestamp(3)),
    -- watermark 设置
    WATERMARK FOR row_time AS row_time - INTERVAL '5' SECOND
) WITH (
  'connector' = 'datagen',
  'rows-per-second' = '10',
  'fields.dim.length' = '1',
  'fields.user_id.min' = '1',
  'fields.user_id.max' = '100000',
  'fields.price.min' = '1',
  'fields.price.max' = '100000'
)

-- 数据汇表
CREATE TABLE sink_table (
    dim STRING,
    pv BIGINT,
    sum_price BIGINT,
    max_price BIGINT,
    min_price BIGINT,
    uv BIGINT,
    window_start bigint
) WITH (
  'connector' = 'print'
)

-- 数据处理逻辑
insert into sink_table
select dim,
    count(*) as pv,
    sum(price) as sum_price,
    max(price) as max_price,
    min(price) as min_price,
    -- 计算 uv 数
    count(distinct user_id) as uv,
    UNIX_TIMESTAMP(CAST(tumble_start(row_time, interval '1' minute) AS STRING)) * 1000  as window_start
from source_table
group by
    dim,
    -- 按照 Flink SQL tumble 窗口写法划分窗口
    tumble(row_time, interval '1' minute)

转换为 Group 聚合 的写法如下:

sql 复制代码
-- 数据源表
CREATE TABLE source_table (
    -- 维度数据
    dim STRING,
    -- 用户 id
    user_id BIGINT,
    -- 用户
    price BIGINT,
    -- 事件时间戳
    row_time AS cast(CURRENT_TIMESTAMP as timestamp(3)),
    -- watermark 设置
    WATERMARK FOR row_time AS row_time - INTERVAL '5' SECOND
) WITH (
  'connector' = 'datagen',
  'rows-per-second' = '10',
  'fields.dim.length' = '1',
  'fields.user_id.min' = '1',
  'fields.user_id.max' = '100000',
  'fields.price.min' = '1',
  'fields.price.max' = '100000'
);

-- 数据汇表
CREATE TABLE sink_table (
    dim STRING,
    pv BIGINT,
    sum_price BIGINT,
    max_price BIGINT,
    min_price BIGINT,
    uv BIGINT,
    window_start bigint
) WITH (
  'connector' = 'print'
);

-- 数据处理逻辑
insert into sink_table
select dim,
    count(*) as pv,
    sum(price) as sum_price,
    max(price) as max_price,
    min(price) as min_price,
    -- 计算 uv 数
    count(distinct user_id) as uv,
    cast((UNIX_TIMESTAMP(CAST(row_time AS STRING))) / 60 as bigint) as window_start
from source_table
group by
    dim,
    -- 将秒级别时间戳 / 60 转化为 1min
    cast((UNIX_TIMESTAMP(CAST(row_time AS STRING))) / 60 as bigint)

确实没错,上面这个转换是一点问题都没有的。

但是窗口聚合和 Group by 聚合的差异在于:

  • 本质区别窗口聚合是具有时间语义的,其本质是想实现窗口结束输出结果之后,后续有迟到的数据也不会对原有的结果发生更改了,即输出结果值是定值(不考虑 allowLateness)。而 Group by 聚合是没有时间语义的,不管数据迟到多长时间,只要数据来了,就把上一次的输出的结果数据撤回,然后把计算好的新的结果数据发出。
  • 运行层面:窗口聚合是和 时间 绑定的,窗口聚合其中窗口的计算结果触发都是由 时间(Watermark)推动的。Group by 聚合完全由 数据 推动触发计算,新来一条数据去根据这条数据进行计算出结果发出;由此可见两者的实现方式也大为不同。

3.SQL 语义

SQL 语义这里也拿离线和实时做对比,Order 为 Kafka,target_table 为 Kafka,这个 SQL 生成的实时任务,在执行时,会生成三个算子。

  • 数据源算子From Order):数据源算子一直运行,实时的从 Order Kafka 中一条一条的读取数据,然后一条一条发送给下游的 Group 聚合算子,向下游发送数据的 shuffle 策略是根据 group by 中的 key 进行发送,相同的 key 发到同一个 SubTask(并发) 中。
  • Group 聚合算子group by key + sum / count / max / min):接收到上游算子发的一条一条的数据,去状态 state 中找这个 key 之前的 sum / count / max / min 结果。如果有结果 oldResult,拿出来和当前的数据进行 sum / count / max / min 计算出这个 key 的新结果 newResult,并将新结果 [key, newResult] 更新到 state 中,在向下游发送新计算的结果之前,先发一条撤回上次结果的消息 -[key, oldResult],然后再将新结果发往下游 +[key, newResult];如果 state 中没有当前 key 的结果,则直接使用当前这条数据计算 sum / max / min 结果 newResult,并将新结果 [key, newResult] 更新到 state 中,当前是第一次往下游发,则不需要先发回撤消息,直接发送 +[key, newResult]
  • 数据汇算子INSERT INTO target_table):接收到上游发的一条一条的数据,写入到 target_table Kafka 中这个实时任务也是 24 24 24 小时一直在运行的,所有的算子在同一时刻都是处于 running 状态的。

4.Group 聚合支持 Grouping sets、Rollup、Cube

Group 聚合也支持 Grouping setsRollupCube。举一个 Grouping sets 的案例:

sql 复制代码
SELECT 
    supplier_id
    , rating
    , product_id
    , COUNT(*)
FROM (VALUES
    ('supplier1', 'product1', 4),
    ('supplier1', 'product2', 3),
    ('supplier2', 'product3', 3),
    ('supplier2', 'product4', 4))
AS Products(supplier_id, product_id, rating)
GROUP BY GROUPING SET (
    ( supplier_id, product_id, rating ),
    ( supplier_id, product_id         ),
    ( supplier_id,             rating ),
    ( supplier_id                     ),
    (              product_id, rating ),
    (              product_id         ),
    (                          rating ),
    (                                 )
)
相关推荐
lilye6617 分钟前
程序化广告行业(39/89):广告投放的数据分析与优化秘籍
大数据·人工智能·数据分析
中科岩创2 小时前
某地老旧房屋自动化监测项目
大数据·物联网·自动化
Florian3 小时前
Graph4Stream:基于图的流计算加速
flink·流计算·图计算·geaflow
viperrrrrrrrrr73 小时前
大数据学习(95)-谓词下推
大数据·sql·学习
汤姆yu4 小时前
基于python大数据的旅游可视化及推荐系统
大数据·旅游·可视化·算法推荐
zhangjin12224 小时前
kettle从入门到精通 第九十四课 ETL之kettle MySQL Bulk Loader大批量高性能数据写入
大数据·数据仓库·mysql·etl·kettle实战·kettlel批量插入·kettle mysql
深圳厨神4 小时前
mysql对表,数据,索引的操作sql
数据库·sql·mysql
哈哈真棒5 小时前
hadoop 集群的常用命令
大数据
luluoluoa5 小时前
SQL、mySQL与SQLite简单理解
sql·mysql·sqlite
阿里云大数据AI技术5 小时前
百观科技基于阿里云 EMR 的数据湖实践分享
大数据·数据库