【大数据】Flink SQL 语法篇(四):Group 聚合

  • 1.基础概念
  • [2.窗口聚合和 Group 聚合](#2.窗口聚合和 Group 聚合)
  • [3.SQL 语义](#3.SQL 语义)
  • [4.Group 聚合支持 Grouping sets、Rollup、Cube](#4.Group 聚合支持 Grouping sets、Rollup、Cube)

1.基础概念

Group 聚合定义(支持 Batch / Streaming 任务):Flink 也支持 Group 聚合。Group 聚合和上面介绍到的窗口聚合的不同之处,就在于 Group 聚合是按照数据的类别进行分组,比如年龄、性别,是横向的;而窗口聚合是在时间粒度上对数据进行分组,是纵向的。如下图所示,就展示出了其区别。其中 **按颜色分 key(横向)**就是 Group 聚合,**按窗口划分(纵向)**就是 窗口聚合

2.窗口聚合和 Group 聚合

应用场景 :一般用于对数据进行分组,然后后续使用聚合函数进行 countsum 等聚合操作。

那么这时候,小伙伴萌就会问到,我其实可以把窗口聚合的写法也转换为 Group 聚合,只需要把 Group 聚合的 Group By key 换成时间就行,那这两个聚合的区别到底在哪?

首先来举一个例子看看怎么将 窗口聚合 转换为 Group 聚合。假如一个窗口聚合是按照 1 1 1 分钟的粒度进行聚合,如下 滚动窗口 SQL:

sql 复制代码
-- 数据源表
CREATE TABLE source_table (
    -- 维度数据
    dim STRING,
    -- 用户 id
    user_id BIGINT,
    -- 用户
    price BIGINT,
    -- 事件时间戳
    row_time AS cast(CURRENT_TIMESTAMP as timestamp(3)),
    -- watermark 设置
    WATERMARK FOR row_time AS row_time - INTERVAL '5' SECOND
) WITH (
  'connector' = 'datagen',
  'rows-per-second' = '10',
  'fields.dim.length' = '1',
  'fields.user_id.min' = '1',
  'fields.user_id.max' = '100000',
  'fields.price.min' = '1',
  'fields.price.max' = '100000'
)

-- 数据汇表
CREATE TABLE sink_table (
    dim STRING,
    pv BIGINT,
    sum_price BIGINT,
    max_price BIGINT,
    min_price BIGINT,
    uv BIGINT,
    window_start bigint
) WITH (
  'connector' = 'print'
)

-- 数据处理逻辑
insert into sink_table
select dim,
    count(*) as pv,
    sum(price) as sum_price,
    max(price) as max_price,
    min(price) as min_price,
    -- 计算 uv 数
    count(distinct user_id) as uv,
    UNIX_TIMESTAMP(CAST(tumble_start(row_time, interval '1' minute) AS STRING)) * 1000  as window_start
from source_table
group by
    dim,
    -- 按照 Flink SQL tumble 窗口写法划分窗口
    tumble(row_time, interval '1' minute)

转换为 Group 聚合 的写法如下:

sql 复制代码
-- 数据源表
CREATE TABLE source_table (
    -- 维度数据
    dim STRING,
    -- 用户 id
    user_id BIGINT,
    -- 用户
    price BIGINT,
    -- 事件时间戳
    row_time AS cast(CURRENT_TIMESTAMP as timestamp(3)),
    -- watermark 设置
    WATERMARK FOR row_time AS row_time - INTERVAL '5' SECOND
) WITH (
  'connector' = 'datagen',
  'rows-per-second' = '10',
  'fields.dim.length' = '1',
  'fields.user_id.min' = '1',
  'fields.user_id.max' = '100000',
  'fields.price.min' = '1',
  'fields.price.max' = '100000'
);

-- 数据汇表
CREATE TABLE sink_table (
    dim STRING,
    pv BIGINT,
    sum_price BIGINT,
    max_price BIGINT,
    min_price BIGINT,
    uv BIGINT,
    window_start bigint
) WITH (
  'connector' = 'print'
);

-- 数据处理逻辑
insert into sink_table
select dim,
    count(*) as pv,
    sum(price) as sum_price,
    max(price) as max_price,
    min(price) as min_price,
    -- 计算 uv 数
    count(distinct user_id) as uv,
    cast((UNIX_TIMESTAMP(CAST(row_time AS STRING))) / 60 as bigint) as window_start
from source_table
group by
    dim,
    -- 将秒级别时间戳 / 60 转化为 1min
    cast((UNIX_TIMESTAMP(CAST(row_time AS STRING))) / 60 as bigint)

确实没错,上面这个转换是一点问题都没有的。

但是窗口聚合和 Group by 聚合的差异在于:

  • 本质区别窗口聚合是具有时间语义的,其本质是想实现窗口结束输出结果之后,后续有迟到的数据也不会对原有的结果发生更改了,即输出结果值是定值(不考虑 allowLateness)。而 Group by 聚合是没有时间语义的,不管数据迟到多长时间,只要数据来了,就把上一次的输出的结果数据撤回,然后把计算好的新的结果数据发出。
  • 运行层面:窗口聚合是和 时间 绑定的,窗口聚合其中窗口的计算结果触发都是由 时间(Watermark)推动的。Group by 聚合完全由 数据 推动触发计算,新来一条数据去根据这条数据进行计算出结果发出;由此可见两者的实现方式也大为不同。

3.SQL 语义

SQL 语义这里也拿离线和实时做对比,Order 为 Kafka,target_table 为 Kafka,这个 SQL 生成的实时任务,在执行时,会生成三个算子。

  • 数据源算子From Order):数据源算子一直运行,实时的从 Order Kafka 中一条一条的读取数据,然后一条一条发送给下游的 Group 聚合算子,向下游发送数据的 shuffle 策略是根据 group by 中的 key 进行发送,相同的 key 发到同一个 SubTask(并发) 中。
  • Group 聚合算子group by key + sum / count / max / min):接收到上游算子发的一条一条的数据,去状态 state 中找这个 key 之前的 sum / count / max / min 结果。如果有结果 oldResult,拿出来和当前的数据进行 sum / count / max / min 计算出这个 key 的新结果 newResult,并将新结果 [key, newResult] 更新到 state 中,在向下游发送新计算的结果之前,先发一条撤回上次结果的消息 -[key, oldResult],然后再将新结果发往下游 +[key, newResult];如果 state 中没有当前 key 的结果,则直接使用当前这条数据计算 sum / max / min 结果 newResult,并将新结果 [key, newResult] 更新到 state 中,当前是第一次往下游发,则不需要先发回撤消息,直接发送 +[key, newResult]
  • 数据汇算子INSERT INTO target_table):接收到上游发的一条一条的数据,写入到 target_table Kafka 中这个实时任务也是 24 24 24 小时一直在运行的,所有的算子在同一时刻都是处于 running 状态的。

4.Group 聚合支持 Grouping sets、Rollup、Cube

Group 聚合也支持 Grouping setsRollupCube。举一个 Grouping sets 的案例:

sql 复制代码
SELECT 
    supplier_id
    , rating
    , product_id
    , COUNT(*)
FROM (VALUES
    ('supplier1', 'product1', 4),
    ('supplier1', 'product2', 3),
    ('supplier2', 'product3', 3),
    ('supplier2', 'product4', 4))
AS Products(supplier_id, product_id, rating)
GROUP BY GROUPING SET (
    ( supplier_id, product_id, rating ),
    ( supplier_id, product_id         ),
    ( supplier_id,             rating ),
    ( supplier_id                     ),
    (              product_id, rating ),
    (              product_id         ),
    (                          rating ),
    (                                 )
)
相关推荐
zmd-zk1 小时前
kafka+zookeeper的搭建
大数据·分布式·zookeeper·中间件·kafka
激流丶1 小时前
【Kafka 实战】如何解决Kafka Topic数量过多带来的性能问题?
java·大数据·kafka·topic
测试界的酸菜鱼1 小时前
Python 大数据展示屏实例
大数据·开发语言·python
时差9531 小时前
【面试题】Hive 查询:如何查找用户连续三天登录的记录
大数据·数据库·hive·sql·面试·database
Mephisto.java1 小时前
【大数据学习 | kafka高级部分】kafka中的选举机制
大数据·学习·kafka
Mephisto.java1 小时前
【大数据学习 | kafka高级部分】kafka的优化参数整理
大数据·sql·oracle·kafka·json·database
道可云1 小时前
道可云人工智能&元宇宙每日资讯|2024国际虚拟现实创新大会将在青岛举办
大数据·人工智能·3d·机器人·ar·vr
成都古河云2 小时前
智慧场馆:安全、节能与智能化管理的未来
大数据·运维·人工智能·安全·智慧城市
软工菜鸡2 小时前
预训练语言模型BERT——PaddleNLP中的预训练模型
大数据·人工智能·深度学习·算法·语言模型·自然语言处理·bert
山海青风2 小时前
第七篇: BigQuery中的复杂SQL查询
sql·googlecloud