深度学习神经网络实战:多层感知机,手写数字识别

目的

利用tensorflow.js训练模型,搭建神经网络模型,完成手写数字识别

设计

简单三层神经网络

  • 输入层
    28*28个神经原,代表每一张手写数字图片的灰度
  • 隐藏层
    100个神经原
  • 输出层
    -10个神经原,分别代表10个数字

代码

// 导入 TensorFlow.js 库
import tf from "@tensorflow/tfjs";
import * as tfjsnode from "@tensorflow/tfjs-node";
import * as tfvis from "@tensorflow/tfjs-vis";
import fs from "fs";
import plot from "nodeplotlib";
// 定义模型
const model = tf.sequential();

// 添加输入层
model.add(
  tf.layers.dense({ units: 64, inputShape: [784], activation: "relu" })
);

// 添加隐藏层
model.add(tf.layers.dense({ units: 100, activation: "relu" }));

// 添加输出层
model.add(tf.layers.dense({ units: 10, activation: "softmax" }));

// 编译模型
model.compile({
  optimizer: "sgd",
  loss: "categoricalCrossentropy",
  metrics: ["accuracy"],
});
const trainDataLen = 3000;
const testDataLen = 2000;

// 加载 MNIST 数据集
import pkg from "mnist";
const { set: Dataset } = pkg;
const set = Dataset(trainDataLen, testDataLen);
const trainingSet = set.training;
const testSet = set.test;

const trainXs = [];
const testXs = [];

const trainLabels = [];
const testLabels = [];

for (let i = 0; i < trainingSet.length; i++) {
  trainXs.push(trainingSet[i].input);
  trainLabels.push(trainingSet[i].output.indexOf(1));
}

for (let i = 0; i < testSet.length; i++) {
  testXs.push(testSet[i].input);
  testLabels.push(testSet[i].output.indexOf(1));
}

// 准备数据
const trainXsTensor = tf.tensor(trainXs, [trainDataLen, 784]);
const trainYsOneHot = tf.oneHot(trainLabels, 10);

//记录每轮模型训练中的损失和精度,为了绘制曲线图
var accPlot = [];
var lossPlot = [];

// 模型训练
model
  .fit(trainXsTensor, trainYsOneHot, {
    batchSize: 64,
    epochs: 100,
    validationSplit: 0.2,
    callbacks: {
      onEpochBegin: (epoch) => console.log(`Epoch ${epoch + 1} started...`),
      onEpochEnd: async (epoch, logs) => {
        console.log(
          `Epoch ${epoch + 1} completed. Loss: ${logs.loss.toFixed(
            3
          )}, Accuracy: ${logs.acc.toFixed(3)}`
        );
        //记录loss和acc,绘制曲线图
        accPlot.push(logs.acc.toFixed(3));
        lossPlot.push(logs.loss.toFixed(3));

        await tf.nextFrame(); // 防止阻塞
      },
      onBatchEnd: async (batch, logs) => {
        console.log(
          `Batch ${batch} completed. Loss: ${logs.loss.toFixed(
            3
          )}, Accuracy: ${logs.acc.toFixed(3)}`
        );
        await tf.nextFrame(); // 防止阻塞
      },
    },
  })
  .then((history) => {
    console.log("Training completed!", history);
    //绘制模型训练过程中的损失函数和模型精度曲线变化
    const epochs = Array.from({ length: lossPlot.length }, (_, i) => i + 1);
    plot.plot(
      [
        { x: epochs, y: lossPlot, name: "Loss" },
        { x: epochs, y: accPlot, name: "Accuracy" },
      ],
      {
        filename: "loss_acc.png",
      }
    );

    //模型评估
    const testXsTensor = tf.tensor(testXs, [testDataLen, 784]);
    const testYsOneHot = tf.oneHot(testLabels, 10);

    const result = model.evaluate(testXsTensor, testYsOneHot);
    const testLoss = result[0].dataSync()[0];
    const testAccuracy = result[1].dataSync()[0];

    console.log(`Test loss: ${testLoss.toFixed(3)}`);
    console.log(`Test accuracy: ${testAccuracy.toFixed(3)}`);
    //保存模型
    model.save("file://./my-model").then(() => {
      console.log("Model saved!");
    });
  });

package.json

{
  "name": "neural_network",
  "version": "1.0.0",
  "description": "",
  "type": "module",
  "main": "mlpTest.js",
  "scripts": {
    "test": "echo \"Error: no test specified\" && exit 1",
  },
  "author": "",
  "license": "ISC",
  "dependencies": {
    "@tensorflow/tfjs": "^4.17.0",
    "@tensorflow/tfjs-node": "^4.17.0",
    "@tensorflow/tfjs-vis": "^1.0.0",
    "mnist": "^1.1.0",
    "nodeplotlib": "^0.7.7"
  },
  "devDependencies": {
    "@babel/core": "^7.0.0",
    "@babel/preset-env": "^7.0.0",
    "babel-loader": "^8.0.0",
    "webpack": "^5.0.0",
    "webpack-cli": "^4.0.0"
  }
}

模型结果

损失函数与模型精度变化

相关推荐
梦云澜2 小时前
论文阅读(十二):全基因组关联研究中生物通路的图形建模
论文阅读·人工智能·深度学习
远洋录3 小时前
构建一个数据分析Agent:提升分析效率的实践
人工智能·ai·ai agent
IT古董4 小时前
【深度学习】常见模型-Transformer模型
人工智能·深度学习·transformer
沐雪架构师5 小时前
AI大模型开发原理篇-2:语言模型雏形之词袋模型
人工智能·语言模型·自然语言处理
摸鱼仙人~5 小时前
Attention Free Transformer (AFT)-2020论文笔记
论文阅读·深度学习·transformer
python算法(魔法师版)5 小时前
深度学习深度解析:从基础到前沿
人工智能·深度学习
kakaZhui6 小时前
【llm对话系统】大模型源码分析之 LLaMA 位置编码 RoPE
人工智能·深度学习·chatgpt·aigc·llama
struggle20257 小时前
一个开源 GenBI AI 本地代理(确保本地数据安全),使数据驱动型团队能够与其数据进行互动,生成文本到 SQL、图表、电子表格、报告和 BI
人工智能·深度学习·目标检测·语言模型·自然语言处理·数据挖掘·集成学习
佛州小李哥7 小时前
通过亚马逊云科技Bedrock打造自定义AI智能体Agent(上)
人工智能·科技·ai·语言模型·云计算·aws·亚马逊云科技
云空8 小时前
《DeepSeek 网页/API 性能异常(DeepSeek Web/API Degraded Performance):网络安全日志》
运维·人工智能·web安全·网络安全·开源·网络攻击模型·安全威胁分析