第三届AAAI/ACM SIGAI博士论文奖出炉,MIT博士260多页论文探索模型泛化

AAAI 2024 奖项陆续公布,继杰出论文奖后,今天博士论文奖也公布了。

这几天,第 38 届国际 AI 顶会 AAAI 2024 在加拿大温哥华会议中心举行。本届 AAAI 会议共有 10504 篇投稿,录取 2527 篇,录取率为 24.1%。

此前,AAAI 官方已经公布杰出论文奖(Outstanding Paper Award),共有三篇论文入选,其中不乏华人学者的身影,比如西安电子科技大学团队论文《Reliable Conflictive Multi-view Learning》。

今日,AAAI 2024 公布了第三届、2021 年 AAAI/ACM SIGAI 博士论文奖获得者及获奖论文,她是 MIT 女博士 Shibani Santurkar,获奖论文为《超越准确性的机器学习:模型泛化的特征视角》。

此外,哈佛大学博士 Bryan Wilder 获得了本届博士论文奖提名,获奖论文为《人口健康领域的人工智能:网络融合数据和算法》。

AAAI/ACM SIGAI 博士论文奖由 AAAI 和 ACM SIGAI 共同设立,旨在发现和鼓励人工智能领域的优秀博士研究和论文。作为一个年度奖项,该博士论文奖将出现在一年一度的 AAAI 会议上,获奖者将在会议上做演讲。

据了解,第一届奖项由 MIT 博士吴佳俊(现为斯坦福助理教授)获得,获奖论文题目为《学习看物理世界》(Learning to See the Physical World)。

第二届奖项由 CMU 博士、 OpenAI 研究科学家 Noam Brown 摘得,获奖论文题目为《大型对抗性不完美信息博弈的均衡发现》(Equilibrium Finding for Large Adversarial Imperfect-Information Games)。

吴佳俊(左)、Noam Brown(右)。

2021 AAAI/ACM SIGAI 博士论文奖

今年获得该奖项的论文题目为「 Machine Learning Beyond Accuracy: A Features Perspective On Model Generalization」,作者是当时在 MIT 求学的计算机科学博士 Shibani Santurkar,Santurkar 现在为斯坦福大学计算机科学博士后。

论文地址:dspace.mit.edu/handle/1721...

论文摘要:由于机器学习(ML)在各种基准上的突出表现,已被很多研究者应用于解决现实世界问题。然而,越来越多的证据表明模型基准性能并不能完全反映全部情况。事实证明,现有的机器学习模型非常脆弱:最突出的问题是它们对对抗性示例输入扰动的敏感性。

本文重新审视对抗性示例,将它们用作了解当前模型的窗口,该研究为为什么出现这种敏感性提供了新的视角:这是模型依赖于可预测但脆弱的输入特征的直接后果。

研究结果表明,对抗性示例实际上反映了一个更深层次的问题:当前模型在基准测试上取得成功的机制,与人类所预期的基本不一致。这引发了一个问题:我们如何构建机器学习(ML)模型,使其不仅在开发时使用的基准测试上具有泛化性,而且还能在真实世界中得到泛化?

为了回答这个问题,该研究从特征视角(features perspective)检查机器学习流程,不仅关注模型预测的标签,还关注它们使用哪些特征来进行预测。因此,在论文的第二部分,研究者开发了一套工具来更好地理解:(i)模型学习了哪些特征,(ii)为什么学习这些特征,以及(iii)如何在训练或测试时修改学到的特征。这些工具使得用户在模型开发过程中进行关键设计选择,比如如何创建数据集,以及训练和评估模型。在这些洞见的基础上,论文随后提出了对机器学习流程的具体改进,以提高模型的泛化能力。

作者介绍

个人主页:shibanisanturkar.com/

Shibani Santurkar 现在为斯坦福大学计算机科学专业的博士后,与 Tatsu Hashimoto、Percy Liang 和 Tengyu Ma(马腾宇) 一起进行研究。在此之前,她在麻省理工学院获得了博士学位,师从 Aleksander Madry 和 Nir Shavit 。Shibani Santurkar 在印度理工学院孟买分校获得了电气工程学士和硕士学位。此前,她还在 Google Brain 和 Vicarious 实习。

在 Google Scholar 上,她的论文引用量近万。

博士论文奖提名

本届 AAAI/ACM SIGAI 博士论文提名奖获得者为哈佛大学博士 Bryan Wilder,现为 CMU 机器学习系助理教授。研究重心为高风险社会环境中实现公平、数据驱动决策的 AI,并整合机器学习、优化和因果推理方法。

在加入 CMU 之前,他曾是哈佛大学公共卫生学院和 CMU 的施密特科学研究员项目的博士后研究员。

论文标题:AI for Population Health: Melding Data and Algorithms on Networks

论文地址:dash.harvard.edu/handle/1/37...

参考链接:aaai.org/about-aaai/...

相关推荐
8Qi836 分钟前
深度学习(鱼书)day08--误差反向传播(后三节)
人工智能·python·深度学习·神经网络
wow_DG1 小时前
【PyTorch✨】01 初识PyTorch
人工智能·pytorch·python
海绵波波1071 小时前
解读LISA:通过大型语言模型实现推理分割
人工智能·语言模型·自然语言处理
昨日之日20061 小时前
FLUX.1 Kontext Dev V2版 - 消费级显卡(6G显存)畅玩的AI修图神器 支持批量 支持多图融合编辑 支持50系显卡 一键整合包下载
人工智能
海森大数据2 小时前
神经网络“开窍”时刻:从死记位置到理解意义的语言奇点
人工智能·深度学习·神经网络
贾全2 小时前
Transformer架构全解析:搭建AI的“神经网络大厦“
人工智能·神经网络·ai·语言模型·自然语言处理·架构·transformer
这是一只菜狗啊2 小时前
使用神经网络与5折交叉验证进行基因组预测:基础知识指南
人工智能·深度学习·神经网络
缘友一世2 小时前
Agents-SDK智能体开发[1]之入门
人工智能·agent·agents_sdk
行然梦实2 小时前
世代距离(GD)和反转世代距离(IGD)详析
人工智能·算法·机器学习·数学建模
code bean2 小时前
【Halcon 】Halcon 实战:如何为 XLD 模板添加极性信息以提升匹配精度?
人工智能·计算机视觉