基于语义解析的KBQA论文

简单KBQA

  1. Template-based question answering over RDF data . Unger, Christina, Lorenz Bühmann, Jens Lehmann, A. N. Ngomo, D. Gerber, P. Cimiano . WWW(2012). [PDF]
  2. Large-scale semantic parsing via schema matching and lexicon extension . Qingqing Cai, Alexander Yates . ACL(2013). [PDF]
  3. Semantic parsing on freebase from question-answer pairs . Jonathan Berant, Andrew Chou, Roy Frostig, Percy Liang . EMNLP(2013). [PDF]
  4. Large-scale semantic parsing without question-answer pairs . Siva Reddy, Mirella Lapata, Mark Steedman . TACL(2014). [PDF]
  5. Semantic parsing for single relation question answering . Wen-tau Yih, Xiaodong He, Christopher Meek . ACL(2014). [PDF]
  6. Information extraction over structured data: Question answering with Freebase . Xuchen Yao, Benjamin Van Durme . ACL(2014). [PDF]
  7. Semantic parsing via staged query graph generation: Question answering with knowledge base . Wen-tau Yih, Ming-Wei Chang, Xiaodong He, Jianfeng Gao . ACL(2015). [PDF]
  8. Simple question answering by attentive convolutional neural network . Wenpeng Yin, Mo Yu, Bing Xiang, Bowen Zhou, Hinrich Schütze . COLING(2016). [PDF]
  9. Learning to compose neural networks for question answering . Jacob Andreas, Marcus Rohrbach, Trevor Darrell, Dan Klein . NAACL(2016). [PDF ] [Code]
  10. Knowledge base question answering with a matching-aggregation model and question-specific contextual relations . Yunshi Lan, Shuohang Wang, Jing Jiang . TASLP(2019). [PDF]

复杂KBQA

  1. Automated template generation for question answering over knowledge graphs . Abujabal, Abdalghani, Mohamed Yahya, Mirek Riedewald, G. Weikum . WWW(2017). [PDF]
  2. Neural symbolic machines: Learning semantic parsers on Freebase with weak supervision . Chen Liang, Jonathan Berant, Quoc Le, Kenneth D. Forbus, Ni Lao . ACL(2017). [PDF ] [Code]
  3. Knowledge base question answering via encoding of complex query graphs . Kangqi Luo, Fengli Lin, Xusheng Luo, Kenny Zhu . EMNLP(2018). [PDF ] [Code]
  4. Neverending learning for open-domain question answering over knowledge bases . Abujabal, Abdalghani, Rishiraj Saha Roy, Mohamed Yahya, G. Weikum . WWW(2018). [PDF]
  5. A state-transition framework to answer complex questions over knowledge base . Sen Hu, Lei Zou, Xinbo Zhang . EMNLP(2018). [PDF]
  6. Question answering over knowledge graphs: Question understanding via template decomposition . Weiguo Zheng, Jeffrey Xu Yu, Lei Zou, Hong Cheng . VLDB(2018). [PDF]
  7. Learning to answer complex questions over knowledge bases with query composition . Bhutani, Nikita, Xinyi Zheng, H. Jagadish . CIKM(2019). [PDF]
  8. UHop: An unrestricted-hop relation extraction framework for knowledge-based question answering . Zi-Yuan Chen, Chih-Hung Chang, Yi-Pei Chen, Jijnasa Nayak, Lun-Wei Ku . NAACL(2019). [PDF]
  9. Multi-hop knowledge base question answering with an iterative sequence matching model . * Yunshi Lan, Shuohang Wang, Jing Jiang*. ICDM(2019). [PDF]
  10. Learning to rank query graphs for complex question answering over knowledge graphs . Gaurav Maheshwari, Priyansh Trivedi, Denis Lukovnikov, Nilesh Chakraborty, Asja Fischer, Jens Lehmann . ISWC(2019). [PDF ] [Code]
  11. Complex program induction for querying knowledge bases in the absence of gold programs . Amrita Saha, Ghulam Ahmed Ansari, Abhishek Laddha, Karthik Sankaranarayanan, Soumen Chakrabarti . TACL(2019). [PDF ][Code]
  12. Leveraging Frequent Query Substructures to Generate Formal Queries for Complex Question Answering . Jiwei Ding, Wei Hu, Qixin Xu, Yuzhong Qu . EMNLP(2019). [PDF]
  13. Hierarchical query graph generation for complex question answering over knowledge graph . Qiu, Yunqi, K. Zhang, Yuanzhuo Wang, Xiaolong Jin, Long Bai, Saiping Guan, Xueqi Cheng . CIKM(2020). [PDF]
  14. SPARQA: skeleton-based semantic parsing for complex questions over knowledge bases . Yawei Sun, Lingling Zhang, Gong Cheng, Yuzhong Qu . AAAI(2020). [PDF ] [Code]
  15. Formal query building with query structure prediction for complex question answering over knowledge base . Yongrui Chen, Huiying Li, Yuncheng Hua, Guilin Qi . IJCAI(2020). [PDF ] [Code]
  16. Query graph generation for answering multi-hop complex questions from knowledge bases . Yunshi Lan, Jing Jiang . ACL(2020). [PDF ] [Code]
  17. Answering Complex Questions by Combining Information from Curated and Extracted Knowledge Bases . Nikita Bhutani, Xinyi Zheng, Kun Qian, Yunyao Li, H. Jagadish . ACL(2020). [PDF]
  18. Leveraging abstract meaning representation for knowledge base question answering . Pavan Kapanipathi, Ibrahim Abdelaziz, Srinivas Ravishankar, Salim Roukos, Alexander Gray, Ramon Astudillo, Maria Chang, Cristina Cornelio, Saswati Dana, Achille Fokoue, Dinesh Garg, Alfio Gliozzo, Sairam Gurajada, Hima Karanam, Naweed Khan, Dinesh Khandelwal, Young-Suk Lee, Yunyao Li, Francois Luus, Ndivhuwo Makondo, Nandana Mihindukulasooriya, Tahira Naseem, Sumit Neelam, Lucian Popa, Revanth Reddy, Ryan Riegel, Gaetano Rossiello, Udit Sharma, G P Shrivatsa Bhargav, Mo Yu . Findings of ACL(2021). [PDF]
  19. Exploiting Rich Syntax for Better Knowledge Base Question Answering
  20. ​​​​​​​RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering
相关推荐
灵途科技10 分钟前
灵途科技亮相NEPCON ASIA 2025 以光电感知点亮具身智能未来
人工智能·科技·机器人
文火冰糖的硅基工坊1 小时前
[人工智能-大模型-125]:模型层 - RNN的隐藏层是什么网络,全连接?还是卷积?RNN如何实现状态记忆?
人工智能·rnn·lstm
IT90901 小时前
c#+ visionpro汽车行业,机器视觉通用检测程序源码 产品尺寸检测,机械手引导定位等
人工智能·计算机视觉·视觉检测
Small___ming2 小时前
【人工智能数学基础】多元高斯分布
人工智能·机器学习·概率论
Ro Jace2 小时前
机器学习、深度学习、信号处理领域常用符号速查表
深度学习·机器学习·信号处理
渔舟渡简2 小时前
机器学习-回归分析概述
人工智能·机器学习
王哈哈^_^2 小时前
【数据集】【YOLO】目标检测游泳数据集 4481 张,溺水数据集,YOLO河道、海滩游泳识别算法实战训练教程。
人工智能·算法·yolo·目标检测·计算机视觉·分类·视觉检测
桂花饼2 小时前
Sora 2:从视频生成到世界模拟,OpenAI的“终极游戏”
人工智能·aigc·openai·sora 2
wwlsm_zql2 小时前
荣耀YOYO智能体:自动执行与任务规划,开启智能生活新篇章
人工智能·生活
科学计算技术爱好者3 小时前
未来已来:AI 如何在 3 年内重塑工作、教育与生活
人工智能·ai