目录

基于语义解析的KBQA论文

简单KBQA

  1. Template-based question answering over RDF data . Unger, Christina, Lorenz Bühmann, Jens Lehmann, A. N. Ngomo, D. Gerber, P. Cimiano . WWW(2012). [PDF]
  2. Large-scale semantic parsing via schema matching and lexicon extension . Qingqing Cai, Alexander Yates . ACL(2013). [PDF]
  3. Semantic parsing on freebase from question-answer pairs . Jonathan Berant, Andrew Chou, Roy Frostig, Percy Liang . EMNLP(2013). [PDF]
  4. Large-scale semantic parsing without question-answer pairs . Siva Reddy, Mirella Lapata, Mark Steedman . TACL(2014). [PDF]
  5. Semantic parsing for single relation question answering . Wen-tau Yih, Xiaodong He, Christopher Meek . ACL(2014). [PDF]
  6. Information extraction over structured data: Question answering with Freebase . Xuchen Yao, Benjamin Van Durme . ACL(2014). [PDF]
  7. Semantic parsing via staged query graph generation: Question answering with knowledge base . Wen-tau Yih, Ming-Wei Chang, Xiaodong He, Jianfeng Gao . ACL(2015). [PDF]
  8. Simple question answering by attentive convolutional neural network . Wenpeng Yin, Mo Yu, Bing Xiang, Bowen Zhou, Hinrich Schütze . COLING(2016). [PDF]
  9. Learning to compose neural networks for question answering . Jacob Andreas, Marcus Rohrbach, Trevor Darrell, Dan Klein . NAACL(2016). [PDF ] [Code]
  10. Knowledge base question answering with a matching-aggregation model and question-specific contextual relations . Yunshi Lan, Shuohang Wang, Jing Jiang . TASLP(2019). [PDF]

复杂KBQA

  1. Automated template generation for question answering over knowledge graphs . Abujabal, Abdalghani, Mohamed Yahya, Mirek Riedewald, G. Weikum . WWW(2017). [PDF]
  2. Neural symbolic machines: Learning semantic parsers on Freebase with weak supervision . Chen Liang, Jonathan Berant, Quoc Le, Kenneth D. Forbus, Ni Lao . ACL(2017). [PDF ] [Code]
  3. Knowledge base question answering via encoding of complex query graphs . Kangqi Luo, Fengli Lin, Xusheng Luo, Kenny Zhu . EMNLP(2018). [PDF ] [Code]
  4. Neverending learning for open-domain question answering over knowledge bases . Abujabal, Abdalghani, Rishiraj Saha Roy, Mohamed Yahya, G. Weikum . WWW(2018). [PDF]
  5. A state-transition framework to answer complex questions over knowledge base . Sen Hu, Lei Zou, Xinbo Zhang . EMNLP(2018). [PDF]
  6. Question answering over knowledge graphs: Question understanding via template decomposition . Weiguo Zheng, Jeffrey Xu Yu, Lei Zou, Hong Cheng . VLDB(2018). [PDF]
  7. Learning to answer complex questions over knowledge bases with query composition . Bhutani, Nikita, Xinyi Zheng, H. Jagadish . CIKM(2019). [PDF]
  8. UHop: An unrestricted-hop relation extraction framework for knowledge-based question answering . Zi-Yuan Chen, Chih-Hung Chang, Yi-Pei Chen, Jijnasa Nayak, Lun-Wei Ku . NAACL(2019). [PDF]
  9. Multi-hop knowledge base question answering with an iterative sequence matching model . * Yunshi Lan, Shuohang Wang, Jing Jiang*. ICDM(2019). [PDF]
  10. Learning to rank query graphs for complex question answering over knowledge graphs . Gaurav Maheshwari, Priyansh Trivedi, Denis Lukovnikov, Nilesh Chakraborty, Asja Fischer, Jens Lehmann . ISWC(2019). [PDF ] [Code]
  11. Complex program induction for querying knowledge bases in the absence of gold programs . Amrita Saha, Ghulam Ahmed Ansari, Abhishek Laddha, Karthik Sankaranarayanan, Soumen Chakrabarti . TACL(2019). [PDF ][Code]
  12. Leveraging Frequent Query Substructures to Generate Formal Queries for Complex Question Answering . Jiwei Ding, Wei Hu, Qixin Xu, Yuzhong Qu . EMNLP(2019). [PDF]
  13. Hierarchical query graph generation for complex question answering over knowledge graph . Qiu, Yunqi, K. Zhang, Yuanzhuo Wang, Xiaolong Jin, Long Bai, Saiping Guan, Xueqi Cheng . CIKM(2020). [PDF]
  14. SPARQA: skeleton-based semantic parsing for complex questions over knowledge bases . Yawei Sun, Lingling Zhang, Gong Cheng, Yuzhong Qu . AAAI(2020). [PDF ] [Code]
  15. Formal query building with query structure prediction for complex question answering over knowledge base . Yongrui Chen, Huiying Li, Yuncheng Hua, Guilin Qi . IJCAI(2020). [PDF ] [Code]
  16. Query graph generation for answering multi-hop complex questions from knowledge bases . Yunshi Lan, Jing Jiang . ACL(2020). [PDF ] [Code]
  17. Answering Complex Questions by Combining Information from Curated and Extracted Knowledge Bases . Nikita Bhutani, Xinyi Zheng, Kun Qian, Yunyao Li, H. Jagadish . ACL(2020). [PDF]
  18. Leveraging abstract meaning representation for knowledge base question answering . Pavan Kapanipathi, Ibrahim Abdelaziz, Srinivas Ravishankar, Salim Roukos, Alexander Gray, Ramon Astudillo, Maria Chang, Cristina Cornelio, Saswati Dana, Achille Fokoue, Dinesh Garg, Alfio Gliozzo, Sairam Gurajada, Hima Karanam, Naweed Khan, Dinesh Khandelwal, Young-Suk Lee, Yunyao Li, Francois Luus, Ndivhuwo Makondo, Nandana Mihindukulasooriya, Tahira Naseem, Sumit Neelam, Lucian Popa, Revanth Reddy, Ryan Riegel, Gaetano Rossiello, Udit Sharma, G P Shrivatsa Bhargav, Mo Yu . Findings of ACL(2021). [PDF]
  19. Exploiting Rich Syntax for Better Knowledge Base Question Answering
  20. ​​​​​​​RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering
本文是转载文章,点击查看原文
如有侵权,请联系 xyy@jishuzhan.net 删除
相关推荐
csssnxy16 分钟前
叁仟数智指路机器人是否支持远程监控和管理?
大数据·人工智能
车斗44 分钟前
win10 笔记本电脑安装 pytorch+cuda+gpu 大模型开发环境过程记录
人工智能·pytorch·电脑
KY_chenzhao1 小时前
数据驱动防灾:AI 大模型在地质灾害应急决策中的关键作用。基于DeepSeek/ChatGPT的AI智能体开发
人工智能·chatgpt·智能体·deepseek·本地化部署
大多_C1 小时前
量化方法分类
人工智能·分类·数据挖掘
www_pp_1 小时前
# 基于 OpenCV 的人脸识别实战:从基础到进阶
人工智能·opencv·计算机视觉
三月七(爱看动漫的程序员)2 小时前
LLM面试题六
数据库·人工智能·gpt·语言模型·自然语言处理·llama·milvus
蹦蹦跳跳真可爱5893 小时前
Python----计算机视觉处理(Opencv:道路检测之车道线拟合)
开发语言·人工智能·python·opencv·计算机视觉
deephub3 小时前
计算加速技术比较分析:GPU、FPGA、ASIC、TPU与NPU的技术特性、应用场景及产业生态
人工智能·深度学习·gpu·计算加速
杰克逊的日记3 小时前
大语言模型应用和训练(人工智能)
人工智能·算法·语言模型
意.远3 小时前
PyTorch参数管理详解:从访问到初始化与共享
人工智能·pytorch·python·深度学习