基于语义解析的KBQA论文

简单KBQA

  1. Template-based question answering over RDF data . Unger, Christina, Lorenz Bühmann, Jens Lehmann, A. N. Ngomo, D. Gerber, P. Cimiano . WWW(2012). [PDF]
  2. Large-scale semantic parsing via schema matching and lexicon extension . Qingqing Cai, Alexander Yates . ACL(2013). [PDF]
  3. Semantic parsing on freebase from question-answer pairs . Jonathan Berant, Andrew Chou, Roy Frostig, Percy Liang . EMNLP(2013). [PDF]
  4. Large-scale semantic parsing without question-answer pairs . Siva Reddy, Mirella Lapata, Mark Steedman . TACL(2014). [PDF]
  5. Semantic parsing for single relation question answering . Wen-tau Yih, Xiaodong He, Christopher Meek . ACL(2014). [PDF]
  6. Information extraction over structured data: Question answering with Freebase . Xuchen Yao, Benjamin Van Durme . ACL(2014). [PDF]
  7. Semantic parsing via staged query graph generation: Question answering with knowledge base . Wen-tau Yih, Ming-Wei Chang, Xiaodong He, Jianfeng Gao . ACL(2015). [PDF]
  8. Simple question answering by attentive convolutional neural network . Wenpeng Yin, Mo Yu, Bing Xiang, Bowen Zhou, Hinrich Schütze . COLING(2016). [PDF]
  9. Learning to compose neural networks for question answering . Jacob Andreas, Marcus Rohrbach, Trevor Darrell, Dan Klein . NAACL(2016). [PDF ] [Code]
  10. Knowledge base question answering with a matching-aggregation model and question-specific contextual relations . Yunshi Lan, Shuohang Wang, Jing Jiang . TASLP(2019). [PDF]

复杂KBQA

  1. Automated template generation for question answering over knowledge graphs . Abujabal, Abdalghani, Mohamed Yahya, Mirek Riedewald, G. Weikum . WWW(2017). [PDF]
  2. Neural symbolic machines: Learning semantic parsers on Freebase with weak supervision . Chen Liang, Jonathan Berant, Quoc Le, Kenneth D. Forbus, Ni Lao . ACL(2017). [PDF ] [Code]
  3. Knowledge base question answering via encoding of complex query graphs . Kangqi Luo, Fengli Lin, Xusheng Luo, Kenny Zhu . EMNLP(2018). [PDF ] [Code]
  4. Neverending learning for open-domain question answering over knowledge bases . Abujabal, Abdalghani, Rishiraj Saha Roy, Mohamed Yahya, G. Weikum . WWW(2018). [PDF]
  5. A state-transition framework to answer complex questions over knowledge base . Sen Hu, Lei Zou, Xinbo Zhang . EMNLP(2018). [PDF]
  6. Question answering over knowledge graphs: Question understanding via template decomposition . Weiguo Zheng, Jeffrey Xu Yu, Lei Zou, Hong Cheng . VLDB(2018). [PDF]
  7. Learning to answer complex questions over knowledge bases with query composition . Bhutani, Nikita, Xinyi Zheng, H. Jagadish . CIKM(2019). [PDF]
  8. UHop: An unrestricted-hop relation extraction framework for knowledge-based question answering . Zi-Yuan Chen, Chih-Hung Chang, Yi-Pei Chen, Jijnasa Nayak, Lun-Wei Ku . NAACL(2019). [PDF]
  9. Multi-hop knowledge base question answering with an iterative sequence matching model . * Yunshi Lan, Shuohang Wang, Jing Jiang*. ICDM(2019). [PDF]
  10. Learning to rank query graphs for complex question answering over knowledge graphs . Gaurav Maheshwari, Priyansh Trivedi, Denis Lukovnikov, Nilesh Chakraborty, Asja Fischer, Jens Lehmann . ISWC(2019). [PDF ] [Code]
  11. Complex program induction for querying knowledge bases in the absence of gold programs . Amrita Saha, Ghulam Ahmed Ansari, Abhishek Laddha, Karthik Sankaranarayanan, Soumen Chakrabarti . TACL(2019). [PDF ][Code]
  12. Leveraging Frequent Query Substructures to Generate Formal Queries for Complex Question Answering . Jiwei Ding, Wei Hu, Qixin Xu, Yuzhong Qu . EMNLP(2019). [PDF]
  13. Hierarchical query graph generation for complex question answering over knowledge graph . Qiu, Yunqi, K. Zhang, Yuanzhuo Wang, Xiaolong Jin, Long Bai, Saiping Guan, Xueqi Cheng . CIKM(2020). [PDF]
  14. SPARQA: skeleton-based semantic parsing for complex questions over knowledge bases . Yawei Sun, Lingling Zhang, Gong Cheng, Yuzhong Qu . AAAI(2020). [PDF ] [Code]
  15. Formal query building with query structure prediction for complex question answering over knowledge base . Yongrui Chen, Huiying Li, Yuncheng Hua, Guilin Qi . IJCAI(2020). [PDF ] [Code]
  16. Query graph generation for answering multi-hop complex questions from knowledge bases . Yunshi Lan, Jing Jiang . ACL(2020). [PDF ] [Code]
  17. Answering Complex Questions by Combining Information from Curated and Extracted Knowledge Bases . Nikita Bhutani, Xinyi Zheng, Kun Qian, Yunyao Li, H. Jagadish . ACL(2020). [PDF]
  18. Leveraging abstract meaning representation for knowledge base question answering . Pavan Kapanipathi, Ibrahim Abdelaziz, Srinivas Ravishankar, Salim Roukos, Alexander Gray, Ramon Astudillo, Maria Chang, Cristina Cornelio, Saswati Dana, Achille Fokoue, Dinesh Garg, Alfio Gliozzo, Sairam Gurajada, Hima Karanam, Naweed Khan, Dinesh Khandelwal, Young-Suk Lee, Yunyao Li, Francois Luus, Ndivhuwo Makondo, Nandana Mihindukulasooriya, Tahira Naseem, Sumit Neelam, Lucian Popa, Revanth Reddy, Ryan Riegel, Gaetano Rossiello, Udit Sharma, G P Shrivatsa Bhargav, Mo Yu . Findings of ACL(2021). [PDF]
  19. Exploiting Rich Syntax for Better Knowledge Base Question Answering
  20. ​​​​​​​RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering
相关推荐
LYFlied11 分钟前
在AI时代,前端开发者如何构建全栈开发视野与核心竞争力
前端·人工智能·后端·ai·全栈
core51227 分钟前
深度解析DeepSeek-R1中GRPO强化学习算法
人工智能·算法·机器学习·deepseek·grpo
Surpass余sheng军27 分钟前
AI 时代下的网关技术选型
人工智能·经验分享·分布式·后端·学习·架构
说私域31 分钟前
基于开源AI智能名片链动2+1模式S2B2C商城小程序源码的所有物服务创新研究
人工智能
桃花键神41 分钟前
openFuyao在AI推理与大数据场景中的加速方案:技术特性与实践探索
大数据·人工智能
wb043072011 小时前
大模型(LLM)及其应用生态中的关键技术栈
人工智能
java1234_小锋1 小时前
Transformer 大语言模型(LLM)基石 - Transformer架构详解 - 自注意力机制(Self-Attention)原理介绍
深度学习·语言模型·transformer
颜颜yan_1 小时前
DevUI + Vue 3 入门实战教程:从零构建AI对话应用
前端·vue.js·人工智能
ney187819024741 小时前
分类网络LeNet + FashionMNIST 准确率92.9%
python·深度学习·分类
Coding茶水间1 小时前
基于深度学习的无人机视角检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉