基于语义解析的KBQA论文

简单KBQA

  1. Template-based question answering over RDF data . Unger, Christina, Lorenz Bühmann, Jens Lehmann, A. N. Ngomo, D. Gerber, P. Cimiano . WWW(2012). [PDF]
  2. Large-scale semantic parsing via schema matching and lexicon extension . Qingqing Cai, Alexander Yates . ACL(2013). [PDF]
  3. Semantic parsing on freebase from question-answer pairs . Jonathan Berant, Andrew Chou, Roy Frostig, Percy Liang . EMNLP(2013). [PDF]
  4. Large-scale semantic parsing without question-answer pairs . Siva Reddy, Mirella Lapata, Mark Steedman . TACL(2014). [PDF]
  5. Semantic parsing for single relation question answering . Wen-tau Yih, Xiaodong He, Christopher Meek . ACL(2014). [PDF]
  6. Information extraction over structured data: Question answering with Freebase . Xuchen Yao, Benjamin Van Durme . ACL(2014). [PDF]
  7. Semantic parsing via staged query graph generation: Question answering with knowledge base . Wen-tau Yih, Ming-Wei Chang, Xiaodong He, Jianfeng Gao . ACL(2015). [PDF]
  8. Simple question answering by attentive convolutional neural network . Wenpeng Yin, Mo Yu, Bing Xiang, Bowen Zhou, Hinrich Schütze . COLING(2016). [PDF]
  9. Learning to compose neural networks for question answering . Jacob Andreas, Marcus Rohrbach, Trevor Darrell, Dan Klein . NAACL(2016). [PDF ] [Code]
  10. Knowledge base question answering with a matching-aggregation model and question-specific contextual relations . Yunshi Lan, Shuohang Wang, Jing Jiang . TASLP(2019). [PDF]

复杂KBQA

  1. Automated template generation for question answering over knowledge graphs . Abujabal, Abdalghani, Mohamed Yahya, Mirek Riedewald, G. Weikum . WWW(2017). [PDF]
  2. Neural symbolic machines: Learning semantic parsers on Freebase with weak supervision . Chen Liang, Jonathan Berant, Quoc Le, Kenneth D. Forbus, Ni Lao . ACL(2017). [PDF ] [Code]
  3. Knowledge base question answering via encoding of complex query graphs . Kangqi Luo, Fengli Lin, Xusheng Luo, Kenny Zhu . EMNLP(2018). [PDF ] [Code]
  4. Neverending learning for open-domain question answering over knowledge bases . Abujabal, Abdalghani, Rishiraj Saha Roy, Mohamed Yahya, G. Weikum . WWW(2018). [PDF]
  5. A state-transition framework to answer complex questions over knowledge base . Sen Hu, Lei Zou, Xinbo Zhang . EMNLP(2018). [PDF]
  6. Question answering over knowledge graphs: Question understanding via template decomposition . Weiguo Zheng, Jeffrey Xu Yu, Lei Zou, Hong Cheng . VLDB(2018). [PDF]
  7. Learning to answer complex questions over knowledge bases with query composition . Bhutani, Nikita, Xinyi Zheng, H. Jagadish . CIKM(2019). [PDF]
  8. UHop: An unrestricted-hop relation extraction framework for knowledge-based question answering . Zi-Yuan Chen, Chih-Hung Chang, Yi-Pei Chen, Jijnasa Nayak, Lun-Wei Ku . NAACL(2019). [PDF]
  9. Multi-hop knowledge base question answering with an iterative sequence matching model . * Yunshi Lan, Shuohang Wang, Jing Jiang*. ICDM(2019). [PDF]
  10. Learning to rank query graphs for complex question answering over knowledge graphs . Gaurav Maheshwari, Priyansh Trivedi, Denis Lukovnikov, Nilesh Chakraborty, Asja Fischer, Jens Lehmann . ISWC(2019). [PDF ] [Code]
  11. Complex program induction for querying knowledge bases in the absence of gold programs . Amrita Saha, Ghulam Ahmed Ansari, Abhishek Laddha, Karthik Sankaranarayanan, Soumen Chakrabarti . TACL(2019). [PDF ][Code]
  12. Leveraging Frequent Query Substructures to Generate Formal Queries for Complex Question Answering . Jiwei Ding, Wei Hu, Qixin Xu, Yuzhong Qu . EMNLP(2019). [PDF]
  13. Hierarchical query graph generation for complex question answering over knowledge graph . Qiu, Yunqi, K. Zhang, Yuanzhuo Wang, Xiaolong Jin, Long Bai, Saiping Guan, Xueqi Cheng . CIKM(2020). [PDF]
  14. SPARQA: skeleton-based semantic parsing for complex questions over knowledge bases . Yawei Sun, Lingling Zhang, Gong Cheng, Yuzhong Qu . AAAI(2020). [PDF ] [Code]
  15. Formal query building with query structure prediction for complex question answering over knowledge base . Yongrui Chen, Huiying Li, Yuncheng Hua, Guilin Qi . IJCAI(2020). [PDF ] [Code]
  16. Query graph generation for answering multi-hop complex questions from knowledge bases . Yunshi Lan, Jing Jiang . ACL(2020). [PDF ] [Code]
  17. Answering Complex Questions by Combining Information from Curated and Extracted Knowledge Bases . Nikita Bhutani, Xinyi Zheng, Kun Qian, Yunyao Li, H. Jagadish . ACL(2020). [PDF]
  18. Leveraging abstract meaning representation for knowledge base question answering . Pavan Kapanipathi, Ibrahim Abdelaziz, Srinivas Ravishankar, Salim Roukos, Alexander Gray, Ramon Astudillo, Maria Chang, Cristina Cornelio, Saswati Dana, Achille Fokoue, Dinesh Garg, Alfio Gliozzo, Sairam Gurajada, Hima Karanam, Naweed Khan, Dinesh Khandelwal, Young-Suk Lee, Yunyao Li, Francois Luus, Ndivhuwo Makondo, Nandana Mihindukulasooriya, Tahira Naseem, Sumit Neelam, Lucian Popa, Revanth Reddy, Ryan Riegel, Gaetano Rossiello, Udit Sharma, G P Shrivatsa Bhargav, Mo Yu . Findings of ACL(2021). [PDF]
  19. Exploiting Rich Syntax for Better Knowledge Base Question Answering
  20. ​​​​​​​RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering
相关推荐
IT古董3 分钟前
【机器学习】机器学习的基本分类-强化学习-Actor-Critic 方法
人工智能·机器学习·分类
martian6653 分钟前
【人工智能数学基础】——深入详解贝叶斯理论:掌握贝叶斯定理及其在分类和预测中的应用
人工智能·数学·分类·数据挖掘·贝叶斯
mingo_敏4 分钟前
深度学习中的并行策略概述:2 Data Parallelism
人工智能·深度学习
終不似少年遊*38 分钟前
美国加州房价数据分析01
人工智能·python·机器学习·数据挖掘·数据分析·回归算法
区块链小八歌1 小时前
链原生 Web3 AI 网络 Chainbase 推出 AVS 主网, 拓展 EigenLayer AVS 场景
人工智能
禾高网络1 小时前
租赁小程序成品|租赁系统搭建核心功能
java·人工智能·小程序
湫ccc2 小时前
《Opencv》基础操作详解(3)
人工智能·opencv·计算机视觉
Jack_pirate2 小时前
深度学习中的特征到底是什么?
人工智能·深度学习
微凉的衣柜3 小时前
微软在AI时代的战略布局和挑战
人工智能·深度学习·microsoft
GocNeverGiveUp3 小时前
机器学习1-简单神经网络
人工智能·机器学习