pytorch中的各种计算

对tensor矩阵的维度变换,加减乘除等是深度学习中的常用操作,本文对一些常用方法进行总结

矩阵乘法

混合矩阵相乘,官网

c 复制代码
torch.matmul(input, other, *, out=None) → Tensor

这个方法执行矩阵相乘操作,需要第一个矩阵的最后一个维度和第二个矩阵的第一个维度相同,即:假设我们有两个矩阵 A 和 B,它们的 size 分别为 (m, n) 和 (n, p),那么 A x B 的 size 为 (m, p)。

矩阵点乘,官网

c 复制代码
torch.mul(input, other, *, out=None) → Tensor

这个方法对矩阵做点积运算(也可简写为*),这个方法要求第一个矩阵的第一个维度和第二个矩阵的第一个维度对应。torch.dot()类似于mul(),它是向量(即只能是一维的张量)的对应位相乘再求和,返回一个tensor。

矩阵维度变换

tensor.view方法,用于调整矩阵的维度,这个方法要求矩阵在调整为度前后的元素个数必须是相同的,官网,例子:

c 复制代码
>>> t = torch.rand(4, 4)
>>> b = t.view(2, 8)
>>> t.storage().data_ptr() == b.storage().data_ptr()  # `t` and `b` share the same underlying data.
True
# Modifying view tensor changes base tensor as well.
>>> b[0][0] = 3.14
>>> t[0][0]
tensor(3.14)

torch中对矩阵的压缩和解压操作:torch.squeeze和torch.unsqueeze,这两种方法的作用是压缩矩阵中的某一个维度或者增加一个维度,官网,两种方法的详解可以参考我之前的笔记pytorch中的torch.squeeze和torch.unsqueeze

矩阵填充,官网torch.nn.functional.pad

c 复制代码
torch.nn.functional.pad(input, pad, mode='constant', value=None) → Tensor
Args:
	"""
	input:四维或者五维的tensor Variabe
	pad:不同Tensor的填充方式
		1.四维Tensor:传入四元素tuple(pad_l, pad_r, pad_t, pad_b),
		指的是(左填充,右填充,上填充,下填充),其数值代表填充次数
		2.六维Tensor:传入六元素tuple(pleft, pright, ptop, pbottom, pfront, pback),
		指的是(左填充,右填充,上填充,下填充,前填充,后填充),其数值代表填充次数
	mode: 'constant', 'reflect' or 'replicate'三种模式,指的是常量,反射,复制三种模式
	value:填充的数值,在"contant"模式下默认填充0,mode="reflect" or "replicate"时没有			

如果给入的填充次数是负数,该函数可以实现从该方向对矩阵的裁剪操作。

需要注意的是,本文中提到的所有方法都支持broadcast操作,也就是,除了参与操作的最后两个维度(矩阵),前面的所有维度都会被认为是batch,以torch,matmul为例,该方法使用两个tensor的后两个维度来计算,其他的维度都可以认为是batch。假设两个输入的维度分别是 i n p u t ( 1000 × 500 × 99 × 11 ) input(1000×500×99×11) input(1000×500×99×11), o t h e r ( 500 × 11 × 99 ) other(500×11×99) other(500×11×99),那么我们可以认为 t o r c h . m a t m u l ( i n p u t , o t h e r ) torch.matmul(input,other) torch.matmul(input,other) 首先是进行后两位矩阵乘法得到 ( 99 × 99 ) (99×99) (99×99) ,然后分析两个参数的batch size分别是 ( 1000 × 500 ) (1000×500) (1000×500)和 ( 500 ) (500) (500), 可以广播成为 ( 1000 × 500 ) (1000×500) (1000×500),因此最终输出的维度是 ( 1000 × 500 × 99 × 99 ) (1000×500×99×99) (1000×500×99×99)。

相关推荐
碳酸的唐1 天前
A* 工程实践全指南:从启发式设计到可视化与性能优化
python·神经网络
缘华工业智维1 天前
工业设备预测性维护:能源成本降低的“隐藏钥匙”?
大数据·网络·人工智能
DooTask官方号1 天前
跨语言协作新范式:阿里云Qwen-MT与DooTask的翻译技术突破
人工智能·ai·项目管理·机器翻译·dootask
凯禾瑞华养老实训室1 天前
聚焦生活照护能力培育:老年生活照护实训室建设清单的模块设计与资源整合
大数据·人工智能·科技·ar·vr·智慧养老·智慧健康养老服务与管理
倔强青铜三1 天前
苦练Python第64天:从零掌握多线程,threading模块全面指南
人工智能·python·面试
格林威1 天前
偏振相机是否属于不同光谱相机的范围内
图像处理·人工智能·数码相机·计算机视觉·视觉检测·工业相机
A-大程序员1 天前
【pytorch】合并与分割
人工智能·pytorch·深度学习
AI新兵1 天前
AI大事记12:Transformer 架构——重塑 NLP 的革命性技术(上)
人工智能·自然语言处理·transformer
Q26433650231 天前
【有源码】基于Hadoop生态的大数据共享单车数据分析与可视化平台-基于Python与大数据的共享单车多维度数据分析可视化系统
大数据·hadoop·python·机器学习·数据分析·spark·毕业设计