【Pytorch深度学习开发实践学习】B站刘二大人课程笔记整理lecture09 Softmax多分类




















代码:

python 复制代码
import torch
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import torch.nn as nn
import torch.nn.functional as F

batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) #把原始图像转为tensor  这是均值和方差

train_set = datasets.MNIST(root='./data/mnist', train=True, download=True, transform=transform)
train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True)

test_set = datasets.MNIST(root='./data/mnist', train=False, download=True, transform=transform)
test_loader = DataLoader(test_set, batch_size=batch_size, shuffle=True)

class LinearClassifier(nn.Module):
    def __init__(self):
        super(LinearClassifier, self).__init__()
        self.l1 = nn.Linear(784, 512)
        self.l2 = nn.Linear(512, 256)
        self.l3 = nn.Linear(256, 128)
        self.l4 = nn.Linear(128, 64)
        self.l5 = nn.Linear(64, 10)


    def forward(self, x):
        x = x.view(-1, 784)
        x = F.relu(self.l1(x))
        x = F.relu(self.l2(x))
        x = F.relu(self.l3(x))
        x = F.relu(self.l4(x))
        return self.l5(x)

criterion = nn.CrossEntropyLoss()
model = LinearClassifier()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

def train(epoch):
    running_loss = 0.0
    for i, data in enumerate(train_loader, 0):
        inputs, labels = data
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
        if i % 300 == 299:    # print every 300 mini-batches
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running_loss / 300))
            running_loss = 0.0

def test(epoch):
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            outputs = model(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()

    print('Accuracy of the network on the 10000 test images: %d %%' % (
        100 * correct / total))

if __name__ == '__main__':
    for epoch in range(100):
        train(epoch)
        if epoch % 10 == 0:
            test(epoch)
相关推荐
咸甜适中13 小时前
rust语言 (1.88) 学习笔记:客户端和服务器端同在一个项目中
笔记·学习·rust
Magnetic_h14 小时前
【iOS】设计模式复习
笔记·学习·ios·设计模式·objective-c·cocoa
研梦非凡15 小时前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
limengshi13839216 小时前
机器学习面试:请介绍几种常用的学习率衰减方式
人工智能·学习·机器学习
知识分享小能手16 小时前
React学习教程,从入门到精通,React 组件核心语法知识点详解(类组件体系)(19)
前端·javascript·vue.js·学习·react.js·react·anti-design-vue
通街市密人有17 小时前
IDF: Iterative Dynamic Filtering Networks for Generalizable Image Denoising
人工智能·深度学习·计算机视觉
智数研析社17 小时前
9120 部 TMDb 高分电影数据集 | 7 列全维度指标 (评分 / 热度 / 剧情)+API 权威源 | 电影趋势分析 / 推荐系统 / NLP 建模用
大数据·人工智能·python·深度学习·数据分析·数据集·数据清洗
周周记笔记17 小时前
学习笔记:第一个Python程序
笔记·学习
优雅鹅17 小时前
ARM、AArch64、amd64、x86_64、x86有什么区别?
arm开发·学习
..过云雨17 小时前
05.【Linux系统编程】进程(冯诺依曼体系结构、进程概念、进程状态(注意僵尸和孤儿)、进程优先级、进程切换和调度)
linux·笔记·学习