【Pytorch深度学习开发实践学习】B站刘二大人课程笔记整理lecture09 Softmax多分类




















代码:

python 复制代码
import torch
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import torch.nn as nn
import torch.nn.functional as F

batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) #把原始图像转为tensor  这是均值和方差

train_set = datasets.MNIST(root='./data/mnist', train=True, download=True, transform=transform)
train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True)

test_set = datasets.MNIST(root='./data/mnist', train=False, download=True, transform=transform)
test_loader = DataLoader(test_set, batch_size=batch_size, shuffle=True)

class LinearClassifier(nn.Module):
    def __init__(self):
        super(LinearClassifier, self).__init__()
        self.l1 = nn.Linear(784, 512)
        self.l2 = nn.Linear(512, 256)
        self.l3 = nn.Linear(256, 128)
        self.l4 = nn.Linear(128, 64)
        self.l5 = nn.Linear(64, 10)


    def forward(self, x):
        x = x.view(-1, 784)
        x = F.relu(self.l1(x))
        x = F.relu(self.l2(x))
        x = F.relu(self.l3(x))
        x = F.relu(self.l4(x))
        return self.l5(x)

criterion = nn.CrossEntropyLoss()
model = LinearClassifier()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

def train(epoch):
    running_loss = 0.0
    for i, data in enumerate(train_loader, 0):
        inputs, labels = data
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
        if i % 300 == 299:    # print every 300 mini-batches
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running_loss / 300))
            running_loss = 0.0

def test(epoch):
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            outputs = model(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()

    print('Accuracy of the network on the 10000 test images: %d %%' % (
        100 * correct / total))

if __name__ == '__main__':
    for epoch in range(100):
        train(epoch)
        if epoch % 10 == 0:
            test(epoch)
相关推荐
董莉影25 分钟前
学习嵌入式第二十二天
数据结构·学习·算法·链表
我爱学嵌入式1 小时前
C 语言第 17 天学习笔记:从二级指针到内存布局的进阶指南
c语言·笔记·学习
Ly2020Wj1 小时前
pytorch入门3:使用pytorch进行多输出手写数据集模型预测
人工智能·pytorch·python
2202_756749691 小时前
3深度学习Pytorch-神经网络--全连接神经网络、数据准备(构建数据类Dataset、TensorDataset 和数据加载器DataLoader)
pytorch·深度学习·神经网络·机器学习
音视频牛哥1 小时前
RTSP/RTMP播放器超低延迟实战:无人机远控视觉链路的工程实践
人工智能·深度学习·计算机视觉
大千AI助手2 小时前
哲学中的主体性:历史演进、理论范式与当代重构
人工智能·深度学习·重构·agent·哲学·智能体·主体性
人生游戏牛马NPC1号2 小时前
学习 Android (十六) 学习 OpenCV (一)
android·opencv·学习
AntBio3 小时前
The Rising Star in Tumor Targets - Claudin18.2 Antibody Now Available
数据库·经验分享·深度学习·其他
2202_756749693 小时前
2深度学习Pytorch-自动微分--梯度计算、梯度上下文控制(累计梯度、梯度清零)
人工智能·pytorch·深度学习
weixin_456904273 小时前
PyTorch RNN 名字分类器
人工智能·pytorch·rnn