算法技巧-前缀和

前缀和算法技巧是一种常用的算法技巧,用于快速计算数组或序列的前缀和

1. 技巧说明

前缀和算法,是用来快速求解数组中某一个区间的区间和的值,如果对于每一个询问,都可以在O(1)的时间复杂度内快速求解,如果使用枚举的思想,则平均复杂度为O(n),远高于O(1)的复杂度。

那么前缀和是如何做到这一点的,其实是通过区间拆分+预处理的思想得到的,预处理的复杂度为O(n)。

1.1 算法步骤

对于给定的一个数组,如下图所示,其中,0~8为数组的下标

那么,对于数组任意的一个区间范围[i,j],如何快速地求解它的区间和? 首先,我们可以看几个例子

[0,2]的区间和为w[0]+w[1]+w[2]=1+2+4=7

[1,3]的区间和为w[1]+w[2]+w[3]=2+4+5=11

我们可以预处理一个前缀和数组s,其中s[i]表示区间[0,i]的区间和,那么我们很容易得出s[i]的递推式 s[i]=s[i−1]+w[i],s[0]=w[0]

根据上述式子,我们可以得到一个前缀和数组,如下图所示

我们知道,对于区间[0,i]的前缀和为s[i],区间[0,j]的前缀和为s[j],则区间[j,i]的前缀和为s[i]−s[j−1],具体计算方式如下:

[j:i]区间和=w[i]+w[i+1]+...w[j]

s[i]=w[0]+w[1]+...w[i] (1)

s[j−1]=w[0]+w[1]+...w[j−1] (2)

根据(1),(2)式子作差可得:[j:i]区间和=s[i]−s[j−1]

因此,我们只需要预处理出前缀和数组,就可以根据上述计算公式,快速地计算出任意一个区间的区间和,在实际笔试或者面试中,为了减少边界情况的考虑,我们更习惯性地将数组下标设置为从1开始

2. 应用场景

2.1 一维前缀和

主要是用于快速地求解某一个区间和 ,但是前缀和是静态的算法 ,就是说这个数组中每一个元素的值不能被修改,如果要一边修改一边动态查询,就需要使用树状数组 或者线段树这种数据结构来实现动态查询。

2.2 二维前缀和

主要是针对二维场景,比如对于一个矩阵,矩阵的长度为n,宽度为m,它对应有n∗m个整数点,每一个点对应的权值不同,使用二维前缀和可以快速求出起点为(x1,y1),终点为(x2,y2)的小矩形的权值和。

注意 :本算法一般是基础算法,笔试中很少会单独考察 ,一般会结合哈希表/数组,动态规划,贪心等算法考察

3. leetcode举例

3.1 寻找数组的中心下标

3.1.1 题目描述

给你一个整数数组 nums ,请计算数组的 中心下标

数组 中心下标 ****是数组的一个下标,其左侧所有元素相加的和等于右侧所有元素相加的和。

如果中心下标位于数组最左端,那么左侧数之和视为 0 ,因为在下标的左侧不存在元素。这一点对于中心下标位于数组最右端同样适用。

如果数组有多个中心下标,应该返回 最靠近左边 的那一个。如果数组不存在中心下标,返回 -1

3.1.2 举例

示例 1:

css 复制代码
输入: nums = [1, 7, 3, 6, 5, 6]
输出: 3
解释:
中心下标是 3 。
左侧数之和 sum = nums[0] + nums[1] + nums[2] = 1 + 7 + 3 = 11 ,
右侧数之和 sum = nums[4] + nums[5] = 5 + 6 = 11 ,二者相等。

示例 2:

ini 复制代码
输入: nums = [1, 2, 3]
输出: -1
解释:
数组中不存在满足此条件的中心下标。

示例 3:

ini 复制代码
输入: nums = [2, 1, -1]
输出: 0
解释:
中心下标是 0 。
左侧数之和 sum = 0 ,(下标 0 左侧不存在元素),
右侧数之和 sum = nums[1] + nums[2] = 1 + -1 = 0 。

提示:

  • 1 <= nums.length <= 104
  • -1000 <= nums[i] <= 1000

3.1.3 解题

经典解法

java 复制代码
class Solution {
    public int pivotIndex(int[] nums) {
        int sum = 0;
        for (int num : nums) {
            sum += num;
        }
        int left = 0;
        for (int i = 0; i < nums.length; i++) {
            if (left == sum - left - nums[i]) {
                return i;
            }
            left += nums[i];
        }
        return -1;
        
    }
}

3.2 560. 和为K的子数组

3.2.1 题目描述

给你一个整数数组 nums 和一个整数 k ,请你统计并返回 *该数组中和为 k ***的子数组的个数

子数组是数组中元素的连续非空序列。

3.2.2 举例

示例 1:

ini 复制代码
输入: nums = [1,1,1], k = 2
输出: 2

示例 2:

ini 复制代码
输入: nums = [1,2,3], k = 3
输出: 2

提示:

  • 1 <= nums.length <= 2 * 104
  • -1000 <= nums[i] <= 1000
  • -107 <= k <= 107

3.2.3 代码

前缀和 + HashMap

java 复制代码
class Solution {
    public int subarraySum(int[] nums, int k) {
        if (nums.length == 0) {
            return 0;
        }
        HashMap<Integer,Integer> map = new HashMap<>();
        //细节,这里需要预存前缀和为 0 的情况,会漏掉前几位就满足的情况
        //例如输入[1,1,0],k = 2 如果没有这行代码,则会返回0,漏掉了1+1=2,和1+1+0=2的情况
        //输入:[3,1,1,0] k = 2时则不会漏掉
        //因为presum[3] - presum[0]表示前面 3 位的和,所以需要map.put(0,1),垫下底
        map.put(0, 1);
        int count = 0;
        int presum = 0;
        for (int x : nums) {
            presum += x;
            //当前前缀和已知,判断是否含有 presum - k的前缀和,那么我们就知道某一区间的和为 k 了。
            if (map.containsKey(presum - k)) {
                count += map.get(presum - k);//获取次数
            }
            //更新
            map.put(presum,map.getOrDefault(presum,0) + 1);
        }
        return count;
    }
}

3.3 1248. 统计优美子数组

3.3.1 描述

给你一个整数数组 nums 和一个整数 k。如果某个连续子数组中恰好有 k 个奇数数字,我们就认为这个子数组是「优美子数组」。

请返回这个数组中 「优美子数组」 的数目。

3.3.2 举例

示例 1:

ini 复制代码
输入: nums = [1,1,2,1,1], k = 3
输出: 2
解释: 包含 3 个奇数的子数组是 [1,1,2,1] 和 [1,2,1,1] 。

示例 2:

ini 复制代码
输入: nums = [2,4,6], k = 1
输出: 0
解释: 数列中不包含任何奇数,所以不存在优美子数组。

示例 3:

ini 复制代码
输入: nums = [2,2,2,1,2,2,1,2,2,2], k = 2
输出: 16

提示:

  • 1 <= nums.length <= 50000
  • 1 <= nums[i] <= 10^5
  • 1 <= k <= nums.length

3.3.3 代码

前缀和+HASHMAP

java 复制代码
class Solution {
    public int numberOfSubarrays(int[] nums, int k) {
        
        if (nums.length == 0) {
            return 0;
        }
        HashMap<Integer,Integer> map = new HashMap<>();
        //统计奇数个数,相当于我们的 presum
        int oddnum = 0;
        int count = 0;
        map.put(0,1);
        for (int x : nums) {
            // 统计奇数个数
            oddnum += x & 1;
            // 发现存在,则 count增加
            if (map.containsKey(oddnum - k)) {
             count += map.get(oddnum - k);
            }
            //存入
            map.put(oddnum,map.getOrDefault(oddnum,0)+1);
        }
        return count;
    }
}

前缀和+数组

java 复制代码
class Solution {
    public int numberOfSubarrays(int[] nums, int k) {      
        int len = nums.length;
        int[] map = new int[len + 1];
        map[0] = 1;
        int oddnum = 0;
        int count = 0;
        for (int i = 0; i < len; ++i) {
            //如果是奇数则加一,偶数加0,相当于没加
            oddnum += nums[i] & 1;
            if (oddnum - k >= 0) {
                count += map[oddnum-k];
            }
            map[oddnum]++;
        }
        return count;
    }
}

参考:
得了,这下我把前缀和扒的干干净净了
互联网大厂笔试基础算法-前缀和(一维&二维)算法讲解

相关推荐
pianmian15 分钟前
python数据结构基础(7)
数据结构·算法
好奇龙猫2 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
sp_fyf_20243 小时前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-01
人工智能·深度学习·神经网络·算法·机器学习·语言模型·数据挖掘
香菜大丸3 小时前
链表的归并排序
数据结构·算法·链表
jrrz08283 小时前
LeetCode 热题100(七)【链表】(1)
数据结构·c++·算法·leetcode·链表
oliveira-time3 小时前
golang学习2
算法
南宫生4 小时前
贪心算法习题其四【力扣】【算法学习day.21】
学习·算法·leetcode·链表·贪心算法
懒惰才能让科技进步5 小时前
从零学习大模型(十二)-----基于梯度的重要性剪枝(Gradient-based Pruning)
人工智能·深度学习·学习·算法·chatgpt·transformer·剪枝
Ni-Guvara5 小时前
函数对象笔记
c++·算法
测试19985 小时前
2024软件测试面试热点问题
自动化测试·软件测试·python·测试工具·面试·职场和发展·压力测试