pytorch 图像的卷积操作

目录

1.卷积核基本参数说明

2.卷积相关操作说明

3.卷积操作示例


1.卷积核基本参数说明

pytorch进行图像卷积操作之前,需要把图像素格式进行分离,比如一个图像为rgb格式,把R,G,B取出来作为一个ndarray,前文讲过,在pytorch中进行图像转Tensor,大小变换,相关处理的库,基本都放在 from torchvision import transforms里面,对于把正常的图像转换为单独的RGB的ndarray,并且归一化,使用 transforms.ToTensor即可一次性完成转换。在训练图像相关模型的时候,主要是训练卷积核的参数,一般的3*3的卷积核结构如代码所示:

python 复制代码
import cv2
import os

import numpy as np
import torch
import torchvision
from torchvision import transforms
from PIL import Image
from torch import nn
from matplotlib import pyplot as plt
from torchvision import transforms
#定义卷积核心,bias为False则不要偏置参数
#输入通道为3,输出通道为1,卷积核大小为3*3,偏置为真
cov = nn.Conv2d(3,1,3,bias=True)
print(cov.state_dict())

'''
OrderedDict([('weight', tensor([[[[ 0.1062,  0.0600, -0.0675],
          [-0.0303,  0.0045, -0.0276],
          [ 0.0114,  0.1434, -0.1323]],

         [[-0.0622, -0.0029, -0.0695],
          [-0.0282, -0.0664, -0.0157],
          [ 0.0037, -0.0900, -0.0588]],

         [[-0.1231, -0.1717,  0.1089],
          [ 0.0051,  0.1269, -0.0846],
          [-0.0662,  0.0817,  0.1689]]]])), ('bias', tensor([0.0631]))])

进程已结束,退出代码为 0
'''
2.卷积相关操作说明

用transforms.ToTensor把图像分为RGB单独通道且归一化后,就可以对图像进行卷积操作,示例代码如图:

python 复制代码
import cv2
import os
import numpy as np
import torch
import torchvision
from torchvision import transforms
from PIL import Image
from torch import nn
from matplotlib import pyplot as plt
from torchvision import transforms

cov = nn.Conv2d(3,1,3,bias=True)
# print(cov.state_dict())
#初始化卷积核所以参数为0.5
for x in cov.parameters():
    nn.init.constant_(x,0.5)

print(cov.state_dict())
d = torch.ones(3,6,6)
d = torch.unsqueeze(d,0)
print(d)
c = cov(d)
print(c)

'''
OrderedDict([('weight', tensor([[[[0.5000, 0.5000, 0.5000],
          [0.5000, 0.5000, 0.5000],
          [0.5000, 0.5000, 0.5000]],

         [[0.5000, 0.5000, 0.5000],
          [0.5000, 0.5000, 0.5000],
          [0.5000, 0.5000, 0.5000]],

         [[0.5000, 0.5000, 0.5000],
          [0.5000, 0.5000, 0.5000],
          [0.5000, 0.5000, 0.5000]]]])), ('bias', tensor([0.5000]))])
tensor([[[[1., 1., 1., 1., 1., 1.],
          [1., 1., 1., 1., 1., 1.],
          [1., 1., 1., 1., 1., 1.],
          [1., 1., 1., 1., 1., 1.],
          [1., 1., 1., 1., 1., 1.],
          [1., 1., 1., 1., 1., 1.]],

         [[1., 1., 1., 1., 1., 1.],
          [1., 1., 1., 1., 1., 1.],
          [1., 1., 1., 1., 1., 1.],
          [1., 1., 1., 1., 1., 1.],
          [1., 1., 1., 1., 1., 1.],
          [1., 1., 1., 1., 1., 1.]],

         [[1., 1., 1., 1., 1., 1.],
          [1., 1., 1., 1., 1., 1.],
          [1., 1., 1., 1., 1., 1.],
          [1., 1., 1., 1., 1., 1.],
          [1., 1., 1., 1., 1., 1.],
          [1., 1., 1., 1., 1., 1.]]]])
tensor([[[[14., 14., 14., 14.],
          [14., 14., 14., 14.],
          [14., 14., 14., 14.],
          [14., 14., 14., 14.]]]], grad_fn=<ConvolutionBackward0>)
'''

从示例代码可以看出,因为我们定义的3通道输入的3*3卷积核心,就生成了3个3*3的核心,3个核心分比对3个通道进行卷积((对应位置直接相乘)然后求和加偏置),得出输出,同理如果定义卷积核输出为三,那么就会定义3*3=9个卷积核每三个卷积核分别对图像进行卷积操作,得出三个输出通道。

3.卷积操作示例

以一张图像为例打开图像,定义卷积核进行卷积操作:

python 复制代码
import cv2
import os
import numpy as np
import torch
import torchvision
from torchvision import transforms
from PIL import Image
from torch import nn
from matplotlib import pyplot as plt
from torchvision import transforms

cov = nn.Conv2d(3,3,3,bias=True)
for x in cov.parameters():
    nn.init.constant_(x,0.05)
print(cov.state_dict())

img = cv2.imread("E:/test/pythonProject/test.jpg")
img = cv2.resize(img,dsize=(320,240))
print('img.shape',img.shape)
trans = transforms.ToTensor()
timg = trans(img)
print('timg.shape',timg.shape)
cimg = cov(timg)
print('cimg.shape',cimg.shape)

timg = timg.permute(1,2,0)
ta = timg.numpy()

cimg = cimg.permute(1,2,0)
ca = cimg.data.numpy()

cv2.imshow("test",img)
cv2.imshow("ta",ta)
cv2.imshow("cimg",ca)

cv2.waitKey()

'''
OrderedDict([('weight', tensor([[[[0.0500, 0.0500, 0.0500],
          [0.0500, 0.0500, 0.0500],
          [0.0500, 0.0500, 0.0500]],

         [[0.0500, 0.0500, 0.0500],
          [0.0500, 0.0500, 0.0500],
          [0.0500, 0.0500, 0.0500]],

         [[0.0500, 0.0500, 0.0500],
          [0.0500, 0.0500, 0.0500],
          [0.0500, 0.0500, 0.0500]]],


        [[[0.0500, 0.0500, 0.0500],
          [0.0500, 0.0500, 0.0500],
          [0.0500, 0.0500, 0.0500]],

         [[0.0500, 0.0500, 0.0500],
          [0.0500, 0.0500, 0.0500],
          [0.0500, 0.0500, 0.0500]],

         [[0.0500, 0.0500, 0.0500],
          [0.0500, 0.0500, 0.0500],
          [0.0500, 0.0500, 0.0500]]],


        [[[0.0500, 0.0500, 0.0500],
          [0.0500, 0.0500, 0.0500],
          [0.0500, 0.0500, 0.0500]],

         [[0.0500, 0.0500, 0.0500],
          [0.0500, 0.0500, 0.0500],
          [0.0500, 0.0500, 0.0500]],

         [[0.0500, 0.0500, 0.0500],
          [0.0500, 0.0500, 0.0500],
          [0.0500, 0.0500, 0.0500]]]])), ('bias', tensor([0.0500, 0.0500, 0.0500]))])
img.shape (240, 320, 3)
timg.shape torch.Size([3, 240, 320])
cimg.shape torch.Size([3, 238, 318])

进程已结束,退出代码为 0
'''

这里定义的卷积核输入为3通道,输出为3通道,这里三组卷积核,每组卷积核包含三个卷积核,三个卷积核分别对三个通道进行卷积,最后每组输出一个通道,三组输出三个通道图像,因为卷积核参数一样,所以最后卷积输出的RGB值相等,输出灰色图像。

这里注意:

复制代码
cimg = cimg.permute(1,2,0)

这个函数是进行维度调换,理解不了,可以先把他转为numpy,再用cv2.merge((r,g,b))函数进行融合,cv2.split(imgt) 可以把图像重新分为 r g b 的numpy.ndarray结构,如代码所示:

python 复制代码
t = cimg.data.numpy()

r = t[0]
g = t[1]
b = t[2]

imgt = cv2.merge((r,g,b))
r,g,b = cv2.split(imgt)
print(r.shape,g.shape,b.shape)

cv2.imshow("imgt",imgt)
cv2.waitKey()

'''
(238, 318) (238, 318) (238, 318)
'''
相关推荐
低维歌者19 分钟前
python训练营day27
java·开发语言·python
满怀101525 分钟前
【生成式AI文本生成实战】从GPT原理到企业级应用开发
人工智能·gpt
微刻时光27 分钟前
影刀处理 Excel:智能工具带来的高效变革
人工智能·python·低代码·自动化·excel·rpa·影刀rpa
大帅不是我29 分钟前
Python多进程编程执行任务
java·前端·python
Fu_lucas33 分钟前
Python Logging 模块完全指南
开发语言·python
Eiceblue34 分钟前
Python 在Excel单元格中应用多种字体样式
开发语言·vscode·python·pycharm·excel
Superstarimage2 小时前
使用conda创建python虚拟环境,并自定义路径
windows·python·conda
聚客AI2 小时前
ChatGPT到Claude全适配:跨模型Prompt高级设计规范与迁移技巧
人工智能·机器学习·语言模型·自然语言处理·langchain·transformer·llama
菜鸡码农,喵。2 小时前
已经装了pygame但pycharm显示没有该模块/软件包无法加载出来下载pygame
python·pycharm·pygame
小羊Linux客栈3 小时前
自动化:批量文件重命名
运维·人工智能·python·自动化·游戏程序